1. EINFÜHRUNG

- 1. Was ist ein Geo-Informationssystem?
- 2. Was sind die Komponenten eines Geo-Informationssystems?
- 3. Anwendung 1: Verkehrs- und Standortplanung
- 4. Anwendung 2: Klimatologische Analysen

1.1 Kartographie

Definition

Wissenschaft, Technik und Kunst von der Herstellung von Karten und kartenverwandten Darstellungen, ausgehend von unmittelbaren Beobachtungen und/oder der Auswertung von Quellen, mit den Arbeitsgängen des Kartenentwerfens, der Kartengestaltung, der Erstellung des Kartenoriginals und der Vervielfältigung (Internationale Kartographische Vereinigung 1973)

Entwicklung

- Ursprünge im Altertum; älteste bekannte Aufzeichnung auf einer Tontafel um 3600 v.Chr. in Mesopotamien
- □ Antikes Griechenland: Entwicklung der wissenschaftlichen Kartographie
- □ Römisches Reich: Anwendung für Militär, Verwaltung und Handel
- □ 15./16. Jahrhundert: Im Zeitalter der Entdeckungen entstehen Erd- und Seekarten und Globen (insbes. Italien, Spanien, Portugal); Entwicklung von Druckverfahren
- □ 20./21. Jahrhundert:
 - Luft- und Satellitenaufnahmen
 - Rechnereinsatz (Computerkartographie, Geo-Informationssysteme)

1.1 Rechnereinsatz

Vorteile

- □ Karten können schneller, billiger, ohne Spezialisten produziert werden
- □ Karten können nach den Benutzerwünschen produziert werden
- □ Es kann mit verschiedenen Darstellungsformen experimentiert werden
- □ Karten können einfach aktualisiert werden
- □ Karten können genauer, vielseitiger analysiert werden
- □ Raumbezogene Daten können beliebig miteinander in Beziehung gesetzt werden

Rahmenbedingungen

- Neue Anforderungen
 (Umweltschutz, zunehmende Vernetzung, komplexe Fragestellungen, ...)
- □ Höhere Leistungsfähigkeit von Rechnern (Prozessoren, Monitore, Drucker)
- ⇒ Entwicklung von Geo-Informationssystemen

1.1 Informationssysteme

Definition

- Bestehen die von Elementen eines Systems durchgeführten Tätigkeiten in der Aufnahme, Verarbeitung und Weitergabe von Informationen, so nennen wir dieses System ein *Informationssystem*. (Lockemann/Mayr)
- Rechnergestützte Informationssysteme sind Software-Systeme zur Unterstützung von Informationssystemen beliebiger technischer und organisatorischer Einrichtungen.

 (Lockemann/Mayr modifiziert)
- □ Klassische Vertreter: Betriebs-, Bank-, Bibliotheks-, Flug-Informationssysteme

Vierkomponentenmodell (IMAP)

- □ Erfassung (*I*nput)
- □ Verwaltung (Datenmodellierung und -speicherung) (Management)
- □ Verarbeitung / Analyse (Analysis)
- □ Darstellung (*P*resentation)

Säulenmodell

□ Hardware, Software, Daten, Anwender

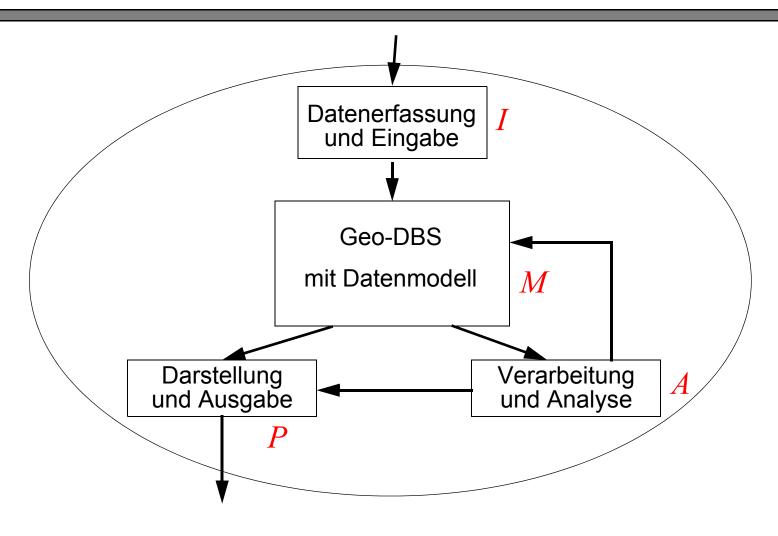
1.1 Geo-Informationssysteme (GIS)

Definition

Rechnergestütztes Informationssystem zur Erfassung, Speicherung, Verarbeitung und Darstellung von Daten, die einen Teil der Erdoberfläche und die darauf befindlichen technischen und administrativen Einrichtungen beschreiben.

Abgrenzung zu klassischen Informationssystemen

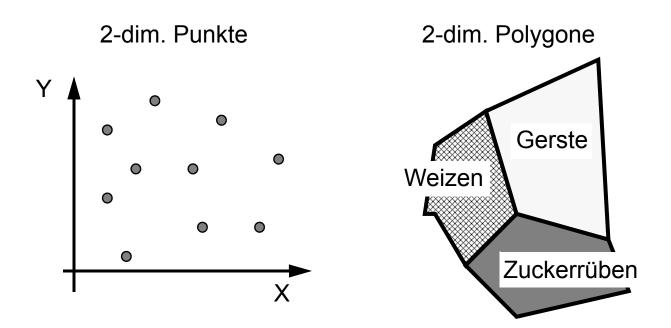
□ Verwaltung von Daten mit einem räumlichen Bezug (Erdoberfläche)


Abgrenzung zur Computerkartographie

Nicht nur Darstellung von vorhandenen Daten (Karten), sondern auch Ableitung neuer
 Daten und neuen Wissens durch (komplexe) Verarbeitungs- / Analyse-Operationen

1.1 Anwendungen

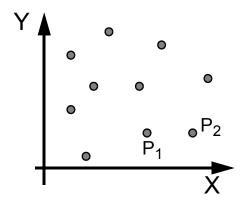
- □ Vermessungswesen (amtliche topographische Karten)
- □ Katasterwesen (automatisierte Grundbücher)
- □ Amtliche Statistik
- Raumplanung
- □ Netzplanung (Netzinformationssysteme)
- □ Verkehr (Verkehrsleit- und -navigationssysteme)
- Nautik
- □ Umweltschutz (Umweltinformationssysteme)
- □ Klimaforschung (Analyse und Simulation)
- □ Hochwasserprognose
- □ Geologie (Ausbeutung von Bodenschätzen)
- **...**

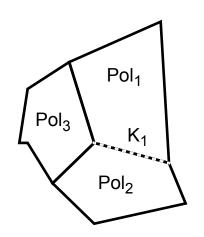

1.2 Komponenten eines GIS

1.2 Modellierung (I)

Geo-Objekte

- Geometrische Datenobjekte (Geo-Objekte) besitzen einen räumlichen Bezugspunkt in einem Koordinatensystem.
- □ Geo-Objekte sind mindestens zweidimensional.
- Geo-Objekte haben im allgemeinen weitere räumliche und nicht-räumliche Attribute (Höhenangabe, Namen, etc.).


1.2 Modellierung (II)


Attributsklassen

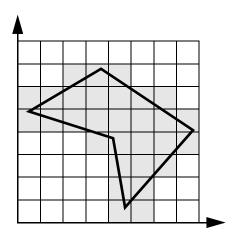
- □ Geometrische Attribute
 - Koordinaten des Punktes P₁
 - Umfang eines Polygons Pol₁
 - Flächeninhalt des Polygons Pol₁
- □ Topologische Attribute

(Zusammensetzung eines Objektes: Art, Anzahl und Beziehungen der Beschreibungselemente)

- Polygon Pol₁ ist Nachbar von Polygon Pol₂
- Polygon Pol₁ und Pol₂ haben Kante K₁ gemeinsam
- □ Thematische Attribute
 - Auf Polygon Pol₁ wird Gerste angebaut
 - Am Punkt P₂ befindet sich das Postamt München 81241

1.2 Modellierung (III)

Vektormodell


- □ Geo-Objekte werden durch ihren Rand beschrieben
- Der Rand wird durch eine Menge von Punkten definiert

Rastermodell

- □ Geo-Objekte werden durch ihr Inneres beschrieben
- □ Das Innere wird als Menge von Pixeln eines Gitters definiert

Vektormodell:

Rastermodell:

1.2 Datenbanksysteme (DBS)

Aufgabe

Beschreibung, dauerhafte Speicherung und Wiedergewinnung von Datenmengen

Bestandteile

- Datenbank: Sammlung aller gespeicherten Daten einschließlich ihrer Beschreibung
- Datenbank-Managementsystem (DBMS): Software, die die Datenbank verwaltet, fortschreibt und alle Zugriffe auf die Datenbank regelt

Relationale DBS

Beschreibung aller Objekte und aller Beziehungen zwischen Objekten durch (ungeordnete) Tabellen

Pol	ygo	ne:
-----	-----	-----

ID	Name	Einwohner
23	Oberbayern	3.800.000
47	Unterfranken	1.300.000
49	Oberpfalz	1.050.000

ID	Х	у
2309		
3456		
4602		

Punkte: Polygon-Punkt:

Pol	Punkt	Folge
23	2309	1
23	4602	2
23	3456	3

1.2 Datenerfassung

Arten

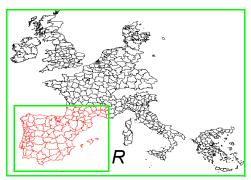
- □ Primäre Erfassungsmethoden
 - Vermessung
 - Photogrammetrie (Luft- und Satellitenbilder)
- □ Sekundäre Erfassungsmethoden
 - Manuelle Digitalisierung (Digitalisiertisch)
 - Automatische Digitalisierung (Scanner)
 - Alphanumerische Eingabe
- □ Tertiäre Erfassungsmethoden
 - Übernahme / Konvertierung von digitalisierten Daten aus anderen GIS

Aufgaben

- □ Entdeckung von Fehlern, von Inkonsistenzen zu bereits vorhandenen Daten
- □ Dokumentation der Datenqualität (Alter, (Un)Genauigkeit, Klassifikationen, ...)
- □ Überführung in das zugrundeliegende Datenmodell (*Transformation*)

Anmerkung: Die Datenerfassung verursacht meist den Großteil aller Kosten eines GIS

1.2 Verarbeitung und Analyse (I)

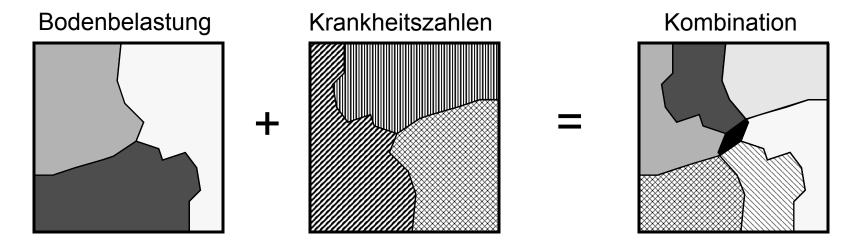

Anfragen

- □ Thematische Anfragen ("Suche alle Krankenhäuser")
- □ Geometrische Anfragen

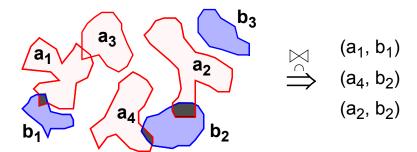
Punkt-Anfrage

P

Fenster-Anfrage

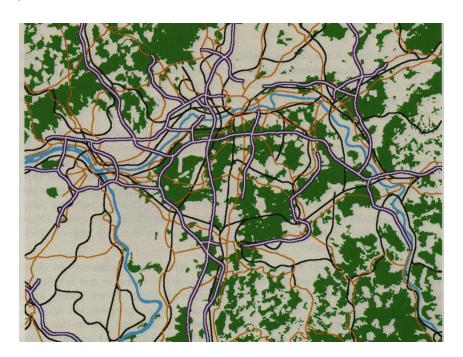


- □ Thematisch-geometrische Anfragen ("Suche alle Krankenhäuser in einem Umkreis von 50 km")
- ⇒ Unterstützung durch DBS ("Wiedergewinnung von Datenmengen")
- ⇒ Unterstützung geometrischer Grundoperationen (Punkt-in-Polygon-Test, Rechteck-Polygon-Schnitt-Test, ...)


1.2 Verarbeitung und Analyse (II)

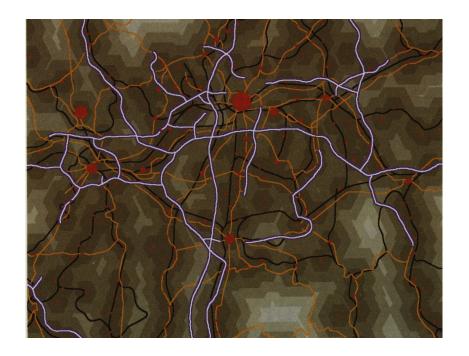
Kombinationen

□ *Map Overlay:* Verschneidung von 2 oder mehr Karten (Kombination von Geometrie und Thematik)


⇒ Unterstützung durch DBS: *Spatial Join*

1.3 Anwendung 1: Verkehrsplanung

Verkehrskarte


- □ Autobahnen, Bundesstrassen und Eisenbahnen (Vektordaten)
- □ Wald (Rasterdaten)

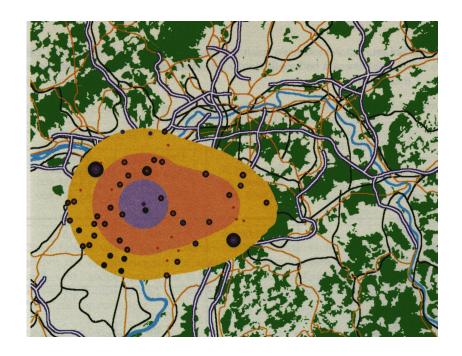
1.3 Verkehrsplanung

Karte der Abstandszonen

- □ Abstände von den Bahnhöfen
- □ Abstandszonen: 0-2, 2-4, 4-6, 6-8 und >8 km
- □ Karte enthält Bahnhöfe (Vektordaten) und Abstandszonen (Rasterdaten)

1.3 Verkehrsplanung

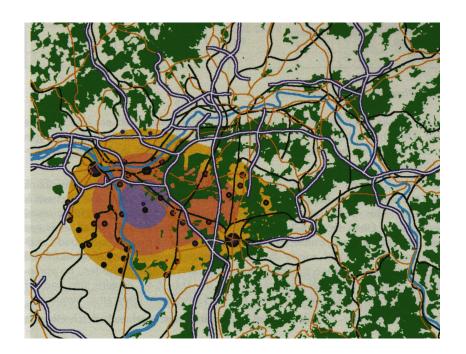
Einwohnerverteilung in den Abstandszonen


- □ Einbezug der Einwohnerzahl der Gemeinden (nicht-räumliches Attribut)
- □ Berechnung der Anzahl Einwohner in jeder Abstandszone

Abstandszone	Einwohner Einwohner (
0-2	3.152.773	87,54
2-4	267.243	7,42
4-6	134.534	3,73
6-8	33.198	0,92
>8	13.733	0,39
Summe	3.601.481	100,00

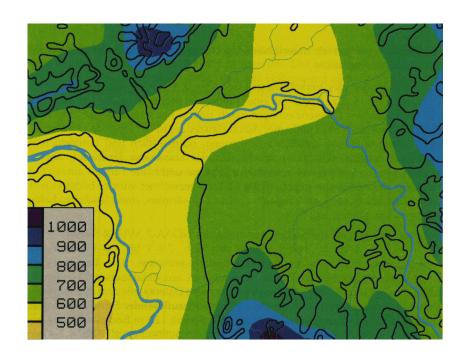
1.3 Standortplanung

Belastungszonen um einen geplanten Standort


- □ manuelle Definition der Belastungszonen am Bildschirm
- oder automatische Bestimmung der Belastungszonen, z.B. mit Hilfe eines Modells der vorherrschenden Windrichtung und -geschwindigkeit
- Darstellung der betroffenen Gemeinden mit Autobahnanschlüssen und Bahnhöfen

1.3 Standortplanung

Waldgebiete in den Belastungszonen


- □ Karte der Belastungszonen
- □ Überlagerung mit Karte der Waldgebiete

1.4 Anwendung 2: Klimatologische Analysen

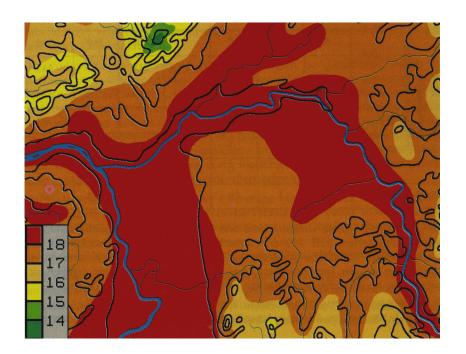
Niederschlagskarte

- □ jährliche Niederschläge in mm
- mit Einblendung von Flüssen und Höhenlinien

1.4 Klimatologische Analysen

Korrelation von Niederschlag und Höhe

□ zweidimensionale Häufigkeitsverteilung (Einheit 0.1% der Gesamtfläche)


Höhe	Jährliche Niederschläge (mm)						
(m über NN)	<500	500-600	600-700	700-800	800-900	900-1000	>1000
<100	0	149	25	1	0	0	0
100-200	7	157	314	45	3	0	0
200-400	0	30	74	115	27	5	1
400-500	0	0	3	22	7	2	0
500-700	0	0	0	4	4	3	0
>700	0	0	0	0	0	2	0

- □ Korrelationskoeffizient 0.63 (Korrelation nicht sehr linear)
- Regressionsgleichung: Niederschlag = 78 + 3.04 Höhe

1.4 Klimatologische Analysen

Karte der Juli-Temperaturen

- □ mittlere Juli-Temperaturen in ⁰C
- mit Einblendung von Flüssen und Höhenlinien

1.4 Klimatologische Analysen

Korrelation von Juli-Temperatur und Höhe

□ zweidimensionale Häufigkeitsverteilung (Einheit 0.1% der Gesamtfläche)

Höhe	Mittlere Juli-Temperaturen (⁰ C)					
(m über NN)	<14	14-15	15-16	16-17	17-18	>18
<100	0	0	0	0	4	171
100-200	0	0	0	0	311	215
200-400	0	0	2	90	154	6
400-500	0	0	16	17	1	0
500-700	0	3	8	0	0	0
>700	2	0	0	0	0	0

- □ Korrelationskoeffizient -0.81 (ziemlich signifikant)
- □ Regressionsgleichung: Temperatur = 18.7 0.0063 Höhe