Skript zur Vorlesung Knowledge Discovery in Databases II im Sommersemester 2007

Kapitel 7: Graph-Strukturierte Daten

Skript © 2007 Matthias Schubert und Karsten Borgwardt

http://www.dbs.ifi.lmu.de/Lehre/KDD

313

Kapitelübersicht

7.1 Graphrepräsentationen

Arten von Graphen, Grundlegende Definitionen, Anwendungsbeispiele

- 7.2 Isomorphiebasierter Graphvergleich und Edit-Distanz Max. Common Subgraph, Min. Common Supergraph, Edit Operationen auf Graphen
- 7.3 Topologische Deskriptoren und Graph-Kernel R-Convolution Kernel, All-Subgraphs Kernel, Random Walks Kernel, Shortest Path-Kernel

Graphrepräsentation

- Graphen sind die allgemeinste Datenstruktur in der Vorlesung
- **Definition**: Ein Graph ist ein Tupel G=(V,E), wobei V eine Menge von Knoten ist und $E \subseteq V \times V$ eine Menge von Kanten.
- Darstellung von Beziehungen zwischen Objekten durch Kanten
- Darstellung anderer Datenstrukturen durch Graphen meist möglich Beispiel: MI-Objekte sind Menge aus Knoten ohne Kanten.
- Problem mit Graphrepräsentationen:
 Vergleich 2er Graphen ist sehr teuer!
 Verwende einfachere Datenstrukturen wenn möglich!

315

Anwendungen

Beispiele:

- Molekulare Strukturen, RNA-Transkription
- Bio-Informatik: Protein-Interaktionsnetzwerke, Philogenetische Netzwerke, Metabolom-Netzwerke..
- Soziale Netzwerke: Vergleich ähnlicher sozialer Gruppen (Zusammenarbeit in Arbeitsgruppe, Zuspiel Fußballmannschaft..)
- WWW, Internet, Computernetzwerke: Web-Ringe, Netzwerk-Topologien..
- XML-Dokumente sind ebenfalls Graphen im allgemeinsten Fall. (Vorsicht viele XML-Datenquellen lassen sich ohne Informationsverlust durch Feature-Vektoren modellieren.)

Arten von Graphen

Erweiterungen der Definition:

GRAPH: Ein Graph ist ein Tupel G=(V,E), wobei V eine Menge von Knoten ist und $E \subseteq V \times V$ eine Menge von Kanten.

GERICHTETER GRAPH: Gilt $(v_k, v_l) \neq (v_p, v_k)$ ist der Graph gerichtet.

GELABELTE oder ATTRIBUTIERTE GRAPHEN: Seien F_V und F_E Feature-Räume.

Ein Graph G heißt gelabelt oder attributiert bzgl. der Knoten V, wenn es zu jedem

Knoten $v \in V$ genau eine Feature-Beschreibung $l_v \in F_E$ gibt.

Ein Graph G heißt gelabelt oder attributiert bzgl. der Kanten E, wenn es zu jeder

Kante $e \in E$ genau eine Feature-Beschreibung $l_e \in F_E$ gibt.

Bemerkung:

In der Regel sind Knoten und Kanten nur mit einzelnen diskreten Attributen gelabelt.

317

Darstellung von Graphen

Knotengrad: Der Grad $d_G(v_i)$ eines Knotens v_i in G=(V,E) ist die Anzahl der anliegenden

Kanten: $d_G(v_i) = |\{v_j | (v_i, v_j) \in E\}|$

Adjanzenz-Matrix: Die Adjazenz-Matrix eines Graphen G=(V,E)

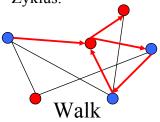
ist gegeben durch: $[A]_{i,j} = \begin{cases} 1 & falls & (v_i, v_j) \in E \\ 0 & sonst \end{cases}$

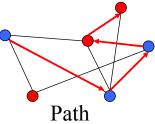
Weg (Walk): Ein Weg in G=(V,E) der Länge k-1 ist eine Sequenz von Knoten $w=(v_1,v_2,...,v_k)$ und $(v_{i-1},v_i) \in E$ für alle $1 \le i \le k$.

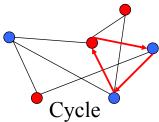
Pfad (Path): w ist ein Pfad falls $v_i \neq v_j$ für alle $i \neq j$.

(=> Kein Knoten darf in w zweimal auftauchen.)

Zyklus (Cycle): Sei $w = (v_1, ..., v_k)$ und $v_1 = v_k$ und für alle 1 < i, j < k gilt $v_i \neq v_j$ dann ist w ein Zyklus.







Das Graph-Vergleichsproblem

Gegeben: 2 Graphen G und G'.

Gesucht: Abbildung $s:(V \times E) \times (V \times E) \rightarrow IR$, die die Ähnlichkeit von G und G' quantifiziert.

Ansätze:

- Isomorphie: 2 Graphen sind gleich, wenn es eine eineindeutige Abbildung von Knoten und Kanten gibt.
 - => Ähnlichkeit über die Größe der isomorphen Teilgraphen.
- Edit-Distanz: Unähnlichkeit der Graphen wird durch Aufwand berechnet den einen Graphen in einen anderen zu verwandeln.
- Topologische Deskriptoren: Zwei Graphen sind ähnlich, wenn ihre Topologie ähnliche Eigenschaften aufweist.
 - (z.B. ähnliche Anzahl von Knoten mit Grad n)

319

7.2 Isomorphiebasierte Graphvergleiche

Wann sind zwei Graphen gleich?

Graph-Isomorphie:

Seien G=(V,E) und G'=(V',E') 2 Graphen. G und G' sind genau dann isomorph $(G \cong G')$, wenn es eine Bijection $f: V \to V'$ mit $(v,v') \in E \Leftrightarrow (f(v),f(v')) \in E'$ für alle $v,v' \in V$. f heißt dann Isomorphismus.

Subgraph: Sei G = (V, E) ein Graph, dann ist G' = (V', E') ein Subgraph von G, wenn $V' \subseteq V$ und $E' \subseteq (V' \times V' \cap E)$.

Subgraph-Isomorphie: Seien G=(V,E) und G'=(V',E') 2 Graphen. G' ist subgraphisomorph zu G falls es einen Subgraph G'' von G gibt mit $\overline{G}''\cong G'$.

Maximaler Gemeinsamer Subgraph: Seien G=(V,E) und G'=(V',E') 2 Graphen. Ein Graph S ist ein maximaler gemeinsamer Subgraph mcs(G,G'), wenn S sowohl Subgraph von G als auch von G' ist und es keinen anderen gemeinsame Subgraphen S' mit mehr Knoten gibt.

Minimaler Gemeinsamer Supergraph: Seien G=(V,E) und G'=(V',E') 2 Graphen. Ein Graph S ist ein minimaler gemeinsamer Supergraph MCS(G,G'), wenn sowohl G als auch von G' ein Subgraph von S ist und es keinen anderen gemeinsamen Supergraphen gibt der weniger Knoten hat.

Isomorphiebasierte Distanzen

- Sowohl die Größe des max. gemeinsamen Subgraphen als auch die Größe des minimalen gemeinsamen Supergraphen beschreiben Ähnlichkeit der Graphen.
- Distanzmaß 1: Relative Größe des maximalen gemeinsamen Subgraphen

$$d_1(G, G') = 1 - \frac{|mcs(G, G')|}{\max(|G|, |G'|)}$$

• Distanzmaß 2: Differenz der Größe zwischen MCS(G,G') und mcs(G,G')

$$d_2(G, G') = |MCS(G, G')| - |mcs(G, G')|$$

- Abhängig von Bestimmung der Größe eines Graphen:
 z.B. Anzahl der Knoten => auch unterschiedliche Graphen haben Abstand 0
- Distanzen sehr teuer in Berechnung, da Bestimmung von MCS und mcs das Subgraph-Isomorphie Problem enthält (NP-hart).

321

Edit Distanzen auf Graphen

Idee: Abstand zweier Graphen entspricht den minimalen Kosten um *G* so abzuändern, dass *G* zu *G* ' isomorph ist.

- integriert Fehlertoleranz, indem Unterschiede bewertet werden
- Operationen: Löschen, Einfügen, Umlabeln von Knoten und Kanten.
- Jede Operation hat Kosten, die von den Labeln abhängen können.
- Eigenschaften wie Symmetrie, Definitheit und Dreiecksungleichung hängen von den Kosten der Edit-Operation ab.

Die Graph Matching Distanz zwischen 2 Objekten entspricht:

$$d(G,G') = \min_{S} \{c(S) | S \text{ ist Sequenz von Operationen , die G in G' ändert}\}$$

wobei *c(S)* die Kosten der Edit-Operationen darstellt.

Problem:

- Graph- und Subgraph-Isomorphie können als Spezialfall der Edit-Distanz betrachtet werden => Berechnung sehr aufwendig
- Ergebnis stark von den Kosten der Edit-Operationen abhängig

Edit Distanzen auf Graphen

Performanz:

- allgemein kann die Komplexität nicht reduziert werden
- Einschränkung der Graphen
 - z.B. auf Bäume.
 - => Bäume können eindeutig als Strings dargestellt werden
 - \Rightarrow Edit-Distanz auf Strings ist in $O(n^2)$
 - => Problem: Einfügen eines Blatts verändert Baum anders als Einfügen eines inneren Knotens.

Bestimmung der Edit-Kosten:

- Domain-Experten
- Mathematische Modelle
- Lernen der Kosten für Klassifikation

323

Fazit

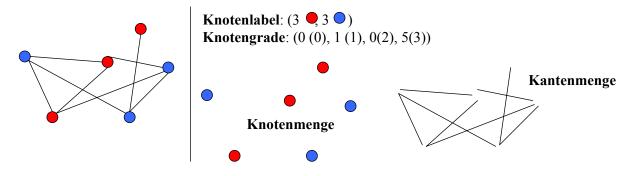
- Mathematische fundiertes Framework
- Graphen werden direkt und bzgl. all ihrer Eigenschaften verglichen
- Isomorphie-basierte Verfahren hängen davon ab wie |G| definiert wird. (Kosten für Label, Kanten, Knoten..)
- Edit-Distanz verallgemeinert Isomorphie-basierte Verfahren
- Kosten und Art der Edit-Operationen bestimmen Distanz
- Kosten für den Vergleich von Graphen sehr hoch
 nur auf wenige Graphen und kleine Graphen anwendbar
- Einschränkung auf bestimmte Topologien kann Problem entspannen. Aber: Verlust der Allgemeinheit von Graphen

7.3 Topologische Deskriptoren und Graph-Kernel

Idee: Da der direkte Vergleich der Graphen zu teuer ist, vergleiche nur die Eigenschaften der Graphen.

Mögliche Eigenschaften:

- Graph-Summarisierung: Bestimme Histogramme über Kantengrade, Kantenlänge, Label-Häufigkeiten..
- Betrachte Graphen als Menge von Kanten und Knoten => Graph besteht aus 2 Repräsentationen aus MI-Objekten



325

Topologische Deskriptoren

Aber: Bis jetzt keine Beschreibung der Graph-Topologie

- ⇒ Topologische Deskriptorenz.B. Eigenschaften von Wegen, Pfaden, Subgraphen...
- ⇒ Topologische Deskriptoren zerlegen ein Graphen in eine Menge von einfacheren topologischen Objekten. Eventuell werden diese noch summarisiert.

Beispiel: Wiener Index

Sei G=(V,E) ein Graph. Dann ist der Wiener Index W(G) definiert durch:

 $W(G) = \sum_{v_i \in G} \sum_{v_j \in G} d(v_i, v_j)$ wobei $d(v_i, v_j)$ die Länge des kürzesten Pfades von v_i nach v_j in G ist.

Bemerkgung: Es gilt: Wenn $G \cong G' \Rightarrow W(G) = W(G')$.

Aber: W(G) = W(G') kann auch für unterschiedliche Graphen G und G' gelten.

Ähnlichkeitsmaße mit topologischen Deskriptoren

Idee: Benutze topologische Deskriptoren und Zerlegungen, um Ähnlichkeit zwischen Graphen zu beschreiben.

Ansätze:

- Ableiten von Feature-Räumen aus Topologischen Deskriptoren
- Integration von topologischen Zerlegungen in Distanzen und Kernel-Funktion
- Im folgenden werden überwiegend Kernel-Funktionen besprochen, da in diesem Gebiet mehr Forschungsergebnisse vorliegen.

327

R-Convolution Kernel

- Verallgemeinerung des Convolution-Kernels für Mengen auf zusammengesetzte Objekte
- Allgemeines Framework für fast alle Graph-Kernel.
- Korrektes Einsetzen in dieses Framework erleichtert den Beweis der positiven Definitheit.

Sei $o \in O$ ein zusammengesetztes Objekt mit $Z(o) = (x_1, ... x_n)$ (=Zerlegung von o), bei der jede Komponente x_i Teil des Raums X_i ist.

 $R: X_1 \times ... \times R_n \longrightarrow \{True, False\}$ gibt an, ob $(x_1, ... x_n)$ eine gültige Zerlegung von o ist. $R^{-1}(o):=\{x|R(o,(x1,...,xn)=True\}$ die Menge aller gültigen Zerlegungen.

Der R-convolution Kernel der Kernelfunktionen $K_1, ..., K_D$ mit $K_i \cdot X_i \times X_i \rightarrow IR$ ist

$$K(x, x') = K_1 * ... * K_n(x, x') = \sum_{x \in R^{-1}(x), x' \in R^{-1}(x')} \prod_{i=1}^n K_i(x_i, x_i')$$

Bemerkung:

- Alle Paare von gültigen Objektzerlegungen werden aufsummiert. Für jedes Paar aus Komponenten werden Kernel-Werte aufmultipliziert.
- Die Flexibilität steckt in der Menge der Zerlegungen und der Komponenten-Kernel

R-Convolution Kernel

Beispiel: Spezialisierung auf Mengen und lineare Kernel

Gegeben:Graph G=(V,E) mit $L: V \rightarrow IR^d$.

Zerlegung eines Graphen und Kernel:

- Z(G)=V
- Kernel K: $\langle x,y \rangle$ linearer Kernel

$$K(G,G') = \sum_{\substack{v \in V \\ v' \in V'}} \prod_{i=1}^{1} \left\langle L(v), L(v') \right\rangle = \sum_{\substack{v \in V \\ v' \in V'}} \left\langle L(v), L(v') \right\rangle$$

Bemerkung:

Der Convolution Kernel aus Kapitel 6 ist also ein R-Convolution Kernel.

329

R-Convolution auf topologischen Deskriptoren

Sei S(G) die Menge aller Subgraphen von G.

All-Subgraph-Kernel für *G* und *G* ':

$$K_{Subgraph}(G, G') = \sum_{g \in S(G)} \sum_{g' \in S(G)} K_{isomorphism}(g, g')$$

wobei

$$K_{isomorphism}(g,g') = \begin{cases} 1 & falls & g \cong g' \\ 0 & sonst \end{cases}$$

Bemerkungen:

- Vergleich aller Teilgraphen auf Isomorphie
- NP-harter Kernel, da das Subgraph-Isomorphie Problem Teil der Berechnung ist.

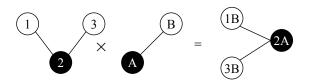
Der Produktgraph

Idee: Um gemeinsame Wege von G und G' zu finden, kann man beide Graphen in einen Produktgraphen $G_{\times}=G\times G$ ' zusammenfassen. Wege im Produktgraphen entsprechen dann den gemeinsamen Wegen von G und G'.

Produktgraph:

 $G_{\times} = G \times G'$ für G = (V, E, L) und G = (V', E', L') ist folgendermaßen definiert:

$$\begin{split} V_{\times} &= \big\{\!\! \big(\!v_i,v_j'\big)\!\!: v_i \in V \wedge v_j' \in V' \wedge L(v_i) = L(v_j')\big\} \\ E_{\times} &= \big\{\!\! \big(\!\! \big(\!v_i,v_j'\big)\!\!, \! \big(\!v_k,v_l'\big)\!\!\big)\!\!\in V \times V' : \! \big(\!v_i,v_k\big)\!\!\in E \wedge \! \big(\!v_j',v_l'\big)\!\!\in E' \wedge L\! \big(\!v_i,v_k\big)\!\!= L\! \big(\!v_j',v'\big)\!\!\big\} \end{split}$$



331

Random Walk Kernel

Idee: Vergleiche 2 Graphen bzgl. der Anzahl aller Wege, die in beiden Graphen gelaufen werden können. Wege sind gleich, wenn man die gleichen Label und die gleiche Anzahl von Knoten in beiden Wegen beobachten kann.

Berechnung:

Zähle alle Wege in beiden Knoten auf und vergleiche diese.

Aber: Wege können unendlich lang sein und Matching ist teuer.

Lösung: Berechnung mit dem Produktgraphen:

$$K_{\times}(G,G') = \sum_{i,j=1}^{|V_{\times}|} \left[\sum_{n=0}^{\infty} \lambda^n A_{\times}^n \right]_{ii} = \sum_{i,j=1}^{|V_{\times}|} \left[\left(I - \lambda A_{\times} \right)^{-1} \right]_{i,j}$$

Bemerkung: Faktor $0 < \lambda < 1$ sorgt für Konvergenz. Unter Konvergenz ist der Random Walk Kernel positiv definit. (*I* ist eine Diagonalmatrix mit 1 in der Hauptdiagonale.)

Random Walk Kernel

Zeitkomplexität:

- für 2 Graphen G und G' sei $n = \max(|V|, |V'|)$
- Berechnung des Produktgraphen:
 - Vergleich aller Paare von Kanten: n² potentielle Kanten
 - Komplexität: O(n⁴)
- Invertieren der Adjazenzmatrix:
 - Inversion einer $n^2 \times n^2$ Matrix : O(n⁶) (Invertieren ist kubisch)
- Laufzeitkomplexität für Berechnung eines Graphvergleichs: O(n⁶)

Fazit: Sehr teures Ähnlichkeitsmaß!!

(Verfahren kann allerdings auf O(n³) beschleunigt werden

[Vishwanathan et al. 2006])

333

Weitere Probleme mit Random Walks

"Tottering"

Walk-Kernel erlauben, dass Wege die gleichen Knoten und Kanten mehrmals enthalten => durch hin und her Wandern zwischen den gleichen 2 Knoten wird die Ähnlichkeit künstlich erhöht.

Lösungsansätze:

- Einführen zusätzlicher Knoten-Labels
 - ⇒ Matchende Knoten nehmen ab
 - ⇒ Klassifikationsgenauigkeit steigt
- Verbieten von Zyklen aus 2 Knoten.
 - => keine Verbesserung
 - => Tottering tritt auch über mehr als 2 Knoten auf

Subtree Kernels

Idee: Vergleiche baumartige Subgraphen, um die Topologie feiner als bei Random-Walk Kernels zu unterscheiden.

Für alle Knotenpaare $v \in V$ und $v' \in V'$ aus G = (V,E) und G' = (V',G') und eine vorgegebene Höhe h:

- 1. Vergleiche rekursiv die Menge der Nachbarn von v und v '
 => Kernel auf Knoten
- 2. Graphvergleich über Aufsummieren der Kernel-Werte über alle Knotenpaare.

335

Subtree Kernels

Nachbarschaft eines Knoten:

- $\delta^+(v)$: Menge der zu Knoten v angrenzende Punkte
- M(v,v'): Menge der Matchings von $\delta^+(v)$ und $\delta^+(v')$

$$M(v,v') = \left\{ R \subseteq \delta^{+}(v) \times \delta^{+}(v') \middle| (\forall (a,b), (c,d) \in R : a = c \Leftrightarrow b = d) \right\}$$

$$\land (\forall (a,b) \in R : label(a) = label(b))$$

Kernel zweier Bäume:

• $k_h(v,v')$ ist dann definiert als: $k_h(v,v') = \lambda_r \lambda_s \sum_{R \in M(v,v')} \prod_{(r,s) \in R} k_{h-1}(r,s)$

 λ_{v} und λ_{v} sind positive Skalare

Subtree Kernels

Vergleich zweier Graphen:

für eine gegebene Höhe h gilt:

$$K_{Tree,h}(G,G') = \sum_{v \in V} \sum_{v' \in V'} k_h(v,v')$$

für h
$$\rightarrow \infty$$
: $K_{Tree}(G, G') = \lim_{h \to \infty} K_{Tree,h}(G, G')$

für passende Werte für λ_v und $\lambda_{v'}$ konvergiert dieser Grenzwert.

- beide Versionen sind bereits positiv definit
- für große h wird $K_{tree}(G, G')$ bereits gut angenähert.

337

Subtree Kernels

- betrachtete Bäume sind nicht notwendigerweise Teilgraphen von G oder G', da Knoten mehrfach besucht werden dürfen.
 - => Tottering ist auch hier ein Problem
- Schlechtere Laufzeit als Random Walk Kernels
 - komplexere Strukturen
 - Laufzeit wächst exponentiell mit Höhe *h* der betrachteten Bäume

Shortest Path Kernel

Idee: Einschränkung der Random Walks auf kürzeste Pfade (Shortest Path). Hierdurch weniger Teilkomponenten, die zu vergleichen sind und kein Tottering mehr.

- Berechne die Menge der kürzesten Pfade für G und G' separat
- Vergleich der Graphen als Menge aus kürzesten Pfaden
- Über Aufsummieren aller Kernel-Werte über alle Paare von kürzesten Pfaden kann ein Kernel auf Graphen definiert werden.

339

Shortest Path Kernel

Berechnung der kürzesten Pfade:

- Berechnung über All-Pair Shortest Path Algorithmus (Floyd-Warshal Algorithmus: $O(n^3)$)
- Ergebnis definiert eine Matrix D:

$$M_{ShortestPath}(G)_{ij} = \begin{cases} d_{i,j} & falls & v_i \text{ erreichbar von } v_j \\ \infty & sonst \end{cases}$$

 Menge der kürzesten Pfade SD(G) beschreibt Graph G (unendliche Wege nicht in SD(G) enthalten)

Shortest Path Kernel

Vergleich 2er Graphen über Convolution Kernel:

$$K_{\mathit{shortestPath}}(G,G') = \sum_{s_1 \in SD(G)} \sum_{s_2 \in SD(G')} k(s_1,s_2)$$

Bemerkung:

• $k(s_1,s_2)$ ist eine Kernelfunktion auf Pfaden/Wegen

Möglichkeiten:

- Vergleich der Distanzen
- Berücksichtigen der Start- und End-Label
- Berücksichtigen aller Label

Komplexität: $O(n^4)$

da n^2 mögliche kürzeste Pfade, die paarweise verglichen werden müssen. (bei komplexen Kerneln auf Pfaden höher!)

341

Bezug zu Distanzen auf Graphen

Häufig lassen sich Kernel direkt in Distanzen überführen, wenn das von der Anwendung her erforderlich ist.

1. Jeder Kernel impliziert auch ein Distanzmaß:

$$D(G,G') = \sqrt{K(G,G) + K(G,G') - 2 \cdot K(G,G')}$$

- 2. Auch konzeptionell können viele Ideen direkt übertragen werden:
 - 1. All-Subgraph: Zähle Anzahl nicht-isomorphe Subgraphen
 - Shortest Path: Vergleich Mengen der kürzesten Pfade mit einem der Abstandsmaße aus Kapitel 6.

Fazit

- Modellierung von Objekten als Graphen erlaubt die Beschreibung von Beziehungen zwischen Teilobjekten.
- Graphen können gerichtet sein und gelabelte Knoten und Kanten haben. Als Label können beliebige andere Objektrepräsentationen dienen. (Meistens: 1 diskretes Attribut)
- Komplexität von Graphen schränkt ihre Anwendbarkeit ein.
- Vergleich über topologische Eigenschaften erlaubt die Verwendung von Beziehungswissen mit vertretbarem Aufwand.
- Topologischer Vergleich arbeitet oft auf Transformation eines Graphen in weniger komplexe Darstellungen (z.B. MI-Objekte oder Feature-Vektoren).

Dabei geht ein Teil der Information verloren.

(z.B. Ungleiche Objekte können Distanz 0 haben.)

343

Literatur

- Borgwardt K., Kriegel H.-P.: "Shortest-path kernels on graphs". In Proc. Intl. Conf. Data Mining (ICDM 2005), 2005
- Borgwardt K.: "Graph Kernels", Dissertation im Fach Informatik, Ludwig-Maximilians-Universität München, 2007
- Bunke, H.: "Recent developments in graph matching". In ICPR, pages 2117–2124. 2000
- Gärtner, T., Flach, P., and Wrobel: "On graph kernels: Hardness results and efficient alternatives." Proc. Annual Conf. Computational Learning Theory, pages 129–143, 2003
- Wiener, H.: "Structural determination of paraffin boiling points". J. Am. Chem. Soc., 69(1):17–20, 1947