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Distinct to linear superpositions of basis functions, NN are composed substructures

Neural Networks  - from Biology to Mathematics

From the modeling of biology to the learning of high dimensional, nonlinear systems
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Forecasting with Feedforward Neural Networks

Dependent on historical data we 
search for a function h(…) modeling 
the shift to the future.
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Existence Theorem:
(Hornik, Stinchcombe, White 1989)

A 3-layer network with sufficient hidden 
neurons can approximate any continuous 
function on a compact domain.
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The Curse of Dimensionality in Approximation Theory

The curse of dimensionality in Standard Approximati on:
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This is a linear superposition of basis functions – their number 
& the number of parameters increase exponentially with dim(x).

Neural Networks escape the curse of dimensionality :
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The independence of the number of parameters from the 
input dimension is paid with nonlinear optimization.

Support Vector Machines offer an alternative remedy :
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Here we have a linear superposition of basis functions, which 
are chosen as part of the data - which can be a drawback. 
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Error Backpropagation - Correspondence between Architecture  & Algorithm

target
targetoutdev 22 −=

( ) 2222 devnetinf ′=∂

2
T
21 Wdev ∂=

( ) 1111 devnetinf ′=∂

1
T
10 Wdev ∂=

( )222 netinfout =

122 outWnetin =

( )111 netinfout =

011 outWnetin =

00 netinout =
Input

Hidden

Output

∑∑
==

−==
T

t

d
tt

T

t
t yy

T
E

T
E

1

2

1

)(
11

� By the forward & backward flows,
,      are efficiently computed.

� Because of the local algorithm, we 
can easily extend the network.

� In case of                                   we get

� In case of                                   we get
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Outlier Handling on Targets  - Robust Error Functions & Derivatives 

� easy to use derivative

� large impact of outliers 

� complicated derivative

� no impact of outliers (robust)

� easy to use derivative

� no impact of outliers (robust) 

p = small

p = large
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Proposals for External and Internal Data Preprocessing
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The unknown level of outlier 
damping is solved in form of  a 
parameter identification task:

)tanh()( zzf =

n = forecast horizon (smoothing)
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Uncertainty in Model Building

� In nonlinear modeling, different weight initializations may end up in different local 
minima. This differentiation shows up on the training as well as on the test set.

� Large networks may be underdetermined. The random substructures do not cause 
problems on the training set but cause a differentiation on the test set.

� The over-parameterization is even helpful to lower the local minima problem, but we 
pay the price by the uncertainty of the generalization behavior.

Monte Carlo Simulation with different weight initializations vs. TargetMonte Carlo 
Simulation by 25 
parallel networks
(Diversification by 

random initialization)
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Pick the Best Model
of an Ensemble

Learning
Algorithms

SENN

Network
Architectures

Use Model to Learn
Uncertainty of Data

Ensemble Averaging
as Best Solution

Techniques for Nonlinear System Identification

Backpropagation allows an efficient computation of gradients, but how to do the weight update 
to get a stable model? Can we use the model to evaluate the data quality & filter corrupted data.

Given an ensemble of models, Occams razor defines the best model as the most parsimonious. 
Bayesian analysis defines the best solution as the average solution of  the model ensemble.

Use Data to Learn
a Stable Model
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Learning Structure from Data  - Learning Rules for Stocha stic Search

Pattern by pattern learning:
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Vario-Eta is a stochastic approx. of the Newton method
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Data meet Structure:  The Observer - Observation Dilemma

Psychological Dilemma:
How far should observations 

determine our picture of the world?
&

How far should our picture of the 
world evaluate observations ?

Use the model to clean the data
Data cleaning implies data uncertainty

Use the data uncertainty to harden the learning

Technical Dilemma:
How far should observations 

determine a model ?
&

How far should a model evaluate 
observations ?

Calculus of Cleaning
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Occams Razor: Search for a Parsimonious Network

Define a criterion for the weight importance:
2

wtest w=

learning validation generalizationData   =

data, available in training

++

Pruning methods split the training data in learning data & validation data, used in the trace. 

w2

w1

best training

sea
rch

 path

best generalization

Initialization by small 
random weights

Advise: Late Stopping & Weight Pruning

1. Train the Neural Network
2. Rank weights by importance
3. Prune lower ranked weights

T
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Weight Pruning Procedure:

Procedure is bias free towards linear models
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Forecasting Expectation & Risk with Ensemble Neural N etworks

Target Series

Average Forecast

Ensemble Forecasts

Training Test

Uncertainty shows up because we do not know the true scenario. Stochasticity is not seen 
as a feature of the real world, but as a consequence of partial observability
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Following Bayes, the expected value of the forecast is computed as the ensemble average.
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Finite unfolding in time transforms 
time into a spatial architecture. We 
assume, that xt=const in the future.

The analysis of open systems by 
RNNs allows a decomposition of 
its autonomous & external driven 
subsystems.

Long-term predictability depends 
on the extraction of a strong 
autonomous subsystem.
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Modeling of Open Dynamical Systems with Recurrent Neura l Networks (RNN)
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From Unknown Initial States to Finite Volume Traject ories for RNNs

� By initial noise (Adaptive Uniform Noise) we harden the model against the unknown st-m
.

� Matrix A becomes a contraction, squeezing out the initial uncertainty.
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Feedforward versus Recurrent Neural Networks Architecture s

� Unfolding in time allows the representation of a temporal process in form of a 
recurrent neural network, if the matrices A, B and C are constant over time.

� In contrast to a feedforward network, the recurrent structure depends on fewer 
parameters and provides more gradient information.

� Each vertical branch of the recurrent net is a 3-layer MLP. 
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Recurrent Neural Networks in Demand Forecasting
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SENN Forecast vs. PTD EA Product E x p e r t  G ro u p S E N N  M o d e l L in e a r  M o d e l
1 8 ,6 % 1 0 ,4 %
2 4 2 ,6 % 7 1 ,9 %
3 1 3 ,8 % 3 6 ,7 %
4 1 0 ,4 % 2 4 ,1 %
5 2 7 ,7 % 2 7 ,3 %
6 1 5 ,0 % 2 1 ,7 %
7 2 4 ,0 % 2 7 ,4 %
8 1 6 ,9 % 1 2 1 ,5 %
9 2 6 ,9 % 3 9 ,5 %

1 0 2 6 ,1 % 2 2 ,3 %
1 1 2 3 ,8 % 3 5 ,8 %
1 2 3 5 ,7 % 6 0 ,4 %
1 3 5 1 ,3 % 2 3 7 ,9 %
1 4 1 2 ,2 % 1 2 ,3 %
1 5 1 9 ,5 % 2 9 ,2 %
1 6 1 8 ,1 % 6 3 ,0 %

A v e ra g e 2 3 ,3 % 5 2 ,6 %
S td . D e v ia t io n 1 1 ,5 % 5 4 ,9 %

F o re c a s t  E r ro r

Neural networks clearly outperform 
linear regression models: 

The forecast accuracy of the neural 
networks is higher and more stable.
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Forecast accuracy = 83,9%

Cumulated forecast / actual sales = 100,8%
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From Recurrent Neural Networks to Error Correction Neural Network s
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An error correction system considers the forecast error in present time as a 
reaction on unknown external information. 

In order to correct the forecasting this error is used as an additional input, which 
substitutes the unknown external information. 



Page 19 © Siemens AG, Corporate TechnologyLearning Systems, CT IC 4

state transition

output equation

identification

Handling Shocks with Error Correction Neural Networks

An error correction system 
considers the forecast error as 
a measurement of 
ex ante unknown additional 
external information or external 
system shocks. 
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30 min. Net-Inter-Change Forecast: Model Output vs. Target

60 min. Net-Inter-Change Forecast: Model Output vs. Target

120 min. Net-Inter-Change Forecast: Model Output vs. Target

relative
forecast error 

(30 min.) Generalization set: 01.02.02 - 14.02.02

Generalization set: 01.02.02 - 14.02.02

Generalization set: 01.02.02 - 14.02.02

relative
forecast error 

(60 min.)

relative
forecast error 

(120 min.)

Net-Inter-Change 
Forecast by 

ECNN

(15 min. Time Grid)

Net Interchange Forecast with Error Correction Neural Ne tworks
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Net Interchange Forecast with Linear Regression & Fee dforward Networks

120 min. Net-Inter-Change Forecast: Model Output vs. Target 120 min. Net-Inter-Change Forecast: Model Output vs. Target

1. Feb. 02 14. Feb. 02 1. Feb. 02 14. Feb. 02

Generalization set Generalization set

relative forecast error 
(120 min. forecast)Linear regression 

model

Feedforward

neural network

relative forecast error 
(120 min. forecast)
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Large Recurrent Neural Networks are Special

� Large recurrent networks model the data perfectly, 
still leaving the opportunity of an eigendynamics.

� The eigenactivity can be seen as a self-created 
internal noise, which acts as a self-regularization.
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no
nl
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� To avoid signal avalanches, large recurrent 
networks have to be sparsely interconnected.

� Random sparsity improves long term memory and 
supports the modeling of multiple time scales.

� In case of a changing environment, large networks 
have to be dynamical consistent closed systems.

� For changing environments large open systems 
would define an inconsistent learning task. 
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Modeling in form of open dynamical 
systems is only consistent if the 
external drivers are nearly constant 
from present time on.

Otherwise the learning works only for 
small RNNs because, following the 
regression paradigm, the optimization 
finds an intermediate solution between 
the active & the constant environment.
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Dynamical Consistency Problem in the Modeling of Dyn amical Systems
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From Standard to Normalized Recurrent Neural Networks
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W.l.o.g. we can model a dynamics by one matrix A:
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It is philosophically implausible, to model 
the real world by various matrices A, B, C.
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Modeling the Dynamics of Observables
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Inputs and targets are merged to 
observables. In the net we refer to 
observations      and expectations
of these observables.

Due to the network design, the  
input to output relation is delayed.

Now we have a contradiction: The  
modeling is dynamical inconsistent.
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Modeling Dynamical Systems with Dynamical Consisten t Neural Networks
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Missing future observations 
are substituted by the 
models own expectations.

DCNNs overcome the  
schizophrenic learning of 
only 1 matrix A for both a 
changing and a constant 
environment. 

Consistency is a necessary condition 
for the learning of large systems.
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Neural Networks  - From Data Mining to Model Building

Neural networks (SENN) allow systems analysis, forecasting
& risk analysis as well as the setup of decision support systems.

Data alone often do not cover the modeling task. Thus, we merge 
model building by data, prior knowledge and first principles.

Network 
Architectures

&
Learning 

Algorithms

Fuzzy Logic

Rule based Modeling

Time Series Data

Data Cleaning

Specific Knowledge

Multi-Agent Models

Dynamical Systems

Time / Causality

Understanding

Falsification of Causality

Forecast Model

Deterministic - Stochastic

Decision Support

Forecast & Risk


