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Neural Networks - from Biology to Mathematics

From the modeling of biology to the learning of high dimensional, nonlinear systems
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Distinct to linear superpositions of basis functions, NN are composed substructures
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Forecasting with Feedforward Neural Networks

Iir?eoar;i_t Dependent on historical data we
ki - search for a function h(...) modeling
ad N o the shift to the future.
' - ~
\Calculusl/, Neural \\
S~ -7 Networks @
\\ y =Wa f (WiX) ,’
N -, Ws
~ -~ -
- T T~ — tanh I/:
¢ _Linear Algebra:) qz) =tanh(z) = >
# variables T Wy
Ut Up-g Upp Up-g Ugg
Existence Theorem:
(Hornik, Stinchcombe, White 1989) Yi+1 = h(Ug,Ug—1,...) =Wo f (Wypx)
A 3-layer network with sufficient hidden T 5
neurons can approximate any continuous Z (yt - ytOI ) —~ min
function on a compact domain. t=1 n
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The Curse of Dimensionality in Approximation Theory

The curse of dimensionality in Standard Approximati on:
m
[y s = f ()() = ZVJ bj (X) with H{V]}H = Cdim(x)
=1
/% ;htls IS a Ilrt;ear ?uperpositlon_of basis functlonst_— Itlhelr_tr;]udrr)ber
CAS A A e number of parameters increase exponentially with dim(x).
i et P P y (x)
o Neural Networks escape the curse of dimensionality
SFFF T

()= v; blw. %) with v, wi=var(r)
j=1

The independence of the number of parameters from the
input dimension is paid with nonlinear optimization.

Support Vector Machines offer an alternative remedy
m
(9= vibl=x;) with  [rv;}]| = |data] & var(t)

*
/ =1
Here we have a linear superposition of basis functions, which
are chosen as part of the data - which can be a drawback.
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Error Backpropagation - Correspondence between Architecture & Algorithm

fYtarget 1J 1d s
out, = fo(netiny) dev, =out, —target E:;ZE :?Z(yt ~Y)

t=1 t=1

( Output
netin, =Whouty T 9, = f4(netiny )dev, y = T2(Wo 1(Wix))
SWET = d0ut; = By the forward & backward flows,
| : . 5 2 are efficiently computed.
outl = fl(netlnl) 1 devl :WZ 02 ' ?
Hidden | = Because of the local algorithm, we
neting =Wjoutg i | 91 = fi(netin)dev;  can easily extend the network.
aEt _ T zZ_-z
aw, 910U " In case of f(2)=tanh(2) =75 we get
5 ) A _ T
Outp = neting 1 devo =Wy 01 f (netin) = 1- (f(netin))? = 1- out?
Input
! = In case of (z)=logistic(z) =—L— we get
— — JE bre”
neting = input g = Id [Hevy = —- f (netin) = f(netin)(1- f(netin)) = out(1- out)

16)4
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Outlier Handling on Targets - Robust Error Functions &

t=1

:
23y -y)* -~ min ¢}

AN

= easy to use derivative
» large impact of outliers
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=

= easy to use derivative

v

= no impact of outliers (robust)
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Derivatives

:
> 4Incosh(p(y, = y{)) -~ min  £>y —y| ~ min
t=1 0= |arge A t=1 A
‘\\ , p;—small
i 0 i 6
%Z tanh(p(y; - y)) = %Z an(y, - y') 2
t=1 A a t=1 A aW

v

= complicated derivative

- = N0 impact of outliers (robust)
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Proposals for External and Internal Data Preprocessing

AW

AN A
VA
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Vi

X =% ~ X-n
n = forecast horizon (smoothing)

)~<t:In( Xt ):Xt_xt—n

Xt-n Xt-n
% = scale(x) =——2 =X
V04 - %2
X —median(x)

A median(|x; — median(x)|)
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The unknown level of outlier
damping is solved in form of a
parameter identification task:

O

1

C f@=tah >
((z) = tanh(2) %{:)

o
[5 ﬁi: W]
_ >
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Uncertainty in Model Building

SIEMENS

* |n nonlinear modeling, different weight initializations may end up in different local
minima. This differentiation shows up on the training as well as on the test set.

» Large networks may be underdetermined. The random substructures do not cause
problems on the training set but cause a differentiation on the test set.

» The over-parameterization is even helpful to lower the local minima problem, but we
pay the price by the uncertainty of the generalization behavior.

= | MeuroSimulator

[=IB][x]

Project WView Actions

Monte Carlo

Simulation by 25

parallel networks

(Diversification by
random initialization)

Help

= Comparizon

[=Is[x]

Parameter View Actions Display Newrons Refreshing

Help

Monte Carlo Simulation with different weight initializations vs. Target

F

2]

b

mlp.inputC20]

VNI

|

£

Time
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Technigues for Nonlinear System Identification

Backpropagation allows an efficient computation of gradients, but how to do the weight update
to get a stable model? Can we use the model to evaluate the data quality & filter corrupted data.

Use Model to Learn

Use Data to Learn

a Stable Model . Uncertainty of Data
Learning
Algorithms
SENN
Network
Pick the Best Model Architectures Ensemble Averaging

as Best Solution

of an Ensemble

Given an ensemble of models, Occams razor defines the best model as the most parsimonious.
Bayesian analysis defines the best solution as the average solution of the model ensemble.
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Learning Structure from Data - Learning Rules for Stocha stic Search

T T

Task: E:%Z :EZ(NN(Xt,W)—ytd) - mviln Notation: G =

t=1 T t=1

Steepest descent learning:

2 0E,

1T
ow Tg‘

Aw = [{-g) = steplength Csearch direction

E(w+Aw) = E(w)+ gTAw+;AWTGAW

Pattern by pattern learning:

Vario Eta Learning:
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2
= E(W)—r]ng+r]2 g' Gg <E(w) for 7 small

Aw; = —NG
= -ng - nla-9
= dlegpestdescent + stochastic search
w, !
Awy = - 1 O
_ _— 2 ®
ESERE ’

Vario-Eta is a stochastic approx. of the Newton method
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Data meet Structure: The Observer - Observation Dilemma

Calculus of Cleaning

dev, = out, —tar

Output

T 3, =
= ,
7
, dev, =
Hidden
" 5 -
oE
Sl
| , dev, =
Input
s 0, L0

X =X +clean(d,,)

input, = x™* + noise(clean(d,, )
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Psychological Dilemma:

How far should observations
determine our picture of the world?
&

How far should our picture of the
world evaluate observations ?

Technical Dilemma:
How far should observations
determine a model ?
&
How far should a model evaluate
observations ?

—~—————

Use the model to clean the data
Data cleaning implies data uncertainty
Use the data uncertainty to harden the learning
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Occams Razor: Search for a Parsimonious Network

Advise: Late Stopping & Weight Pruning

A

Initialization by small
random weights

W, best training

SIEMENS

Define a criterion for the weight importance:

testy, = W

Weight Pruning Procedure;

best generalization

Trace the
best model

v

v

1. Train the Neural Network
2. Rank weights by importance
3. Prune lower ranked weights

Procedure is bias free towards linear models

Pruning methods split the training data in learning data & validation data, used in the trace.

learnin
Data = ca g

<

validation

+ generalization

@ . ]

data, available in training
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Forecasting Expectation & Risk with Ensemble Neural N etworks

Following Bayes, the expected value of the forecast is computed as the ensemble average.

w=1.0, no Moise

Test

Training

.15+ B Ensemble Forecasts

“2[ M Average Forecast

| M Target Series

5 1 1 1 1
0 3 10 13 Pl 23 a0 33 40 45 al

Uncertainty shows up because we do not know the true scenario. Stochasticity is not seen
as a feature of the real world, but as a consequence of partial observability
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Modeling of Open Dynamical Systems with Recurrent Neura | Networks (RNN)

&
St = f(st,up)
Nt g(st)

ul ’

Finite unfolding in time transforms
time into a spatial architecture. We

assume, that x,=const in the future.

The analysis of open systems by
RNNs allows a decomposition of
its autonomous & external driven
subsystems.

Long-term predictability depends
on the extraction of a strong
autonomous subsystem.

state transition
output equation

identification

() @) (9 @
O DaCr AT

B B B B
@ @ @ @ Preprocessing:
U =X~ X4
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From Unknown Initial States to Finite Volume Traject  ories for RNNs

To define a recursion S,; = f(S,U,) we have to specify an of the iteration!

A
>t output target

Output

trajectory as finite volume tube w =Wl g_ENL‘

[ ‘ Hidden ]
w, =V\H7%L
1 )

[ Input ]

= By we harden the model against the unknown
= Matrix A becomes a contraction, squeezing out the initial uncertainty.
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Feedforward versus Recurrent Neural Networks Architecture S

Yirr = ZVJ‘ tanh£ZWJiUt—ij S+ = tanh(As; +Buy) , y; =Cs
j i

| :
W
E

C U4 Ugg Ugp Up_g Ug D

» Unfolding in time allows the representation of a temporal process in form of a
recurrent neural network, if the matrices A, B and C are constant over time.

» |n contrast to a feedforward network, the recurrent structure depends on fewer
parameters and provides more gradient information.

= Each vertical branch of the recurrent net is a 3-layer MLP.
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Recurrent Neural Networks in Demand Forecasting

Forecast Error

SENN Forecast vs. PTD EA Product Expert Group SENN Model Linear Model
1 8,6% 10,4%
2 42,6% 71,9%
g 3 13,8% 36,7%
O 4 10,4% 24,1%
2 5 27,7% 27,3%
o 6 15,0% 21,7%
£ 7 24,0% 27,4%
o 8 16,9% 121,5%
= 9 26,9% 39,5%
2 10 26,1% 22,3%
e 11 23,8% 35,8%
” 12 35,7% 60,4%
Qo 13 51,3% 237,9%
- 14 12,2% 12,3%
Cumulated forecast / actual sales = 100,8% 15 19,5% 29,2%
— 16 18,1% 63,0%
2 g § S ¢ 8 5 £ «g £ Average 23,3% 52,6 %
i K Std. Deviation 11,5% 54,9%
60,0% 52,6%
S 50,0%
Neural networks clearly outperform T 40,0%
. . ]
linear regression models: S 30,0% - 23 3%
o
LL
The forecast accuracy of the neural g 20.0% 7
- - [ .
networks is higher and more stable. g 00
0,0% -~

SENN Model Linear Model
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From Recurrent Neural Networks to Error Correction Neural Network S
An error correction system considers the forecast error in present time as a
reaction on unknown external information.

i 1
Siv1 = f (S, Ug) St+1:f(st’ut’(yt_ytd))
ye = d(st) ye = d(st)
I | T
u u

In order to correct the forecasting this error is used as an additional input, which
substitutes the unknown external information.
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Handling Shocks with Error Correction Neural Networks

_ d ..
An error correction system 5171 (St U, (Y — Vi )) state transition
considers the forecast error as
a measurement of - Yi = g(s[) output equation
ex ante unknown additional
external information or external 1 T 2
system shocks. — > ( ) ~ min identification
T : f 1g
A A A
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Net Interchange Forecast with Error Correction Neural Ne  tworks

30 min. Net-Inter-Change Forecast: Model Output vs. Target

relative
| forecast error
Net-Inter-Change | (30 min.)
F%)recant b)/ élGeneralization

ECNN |
(15 min. Time Grid) |

0.0811861

relative

+ Generalization set: 01.02.02 - 14.02.02

60 min. Net-Inter-Change Forecast: Model Output vs. Target

forecast error
(60 min.)

Genseralization

YN 0.130894

VORI

Generalization set: 01.02.02 - 14.02.02

Serr 2 E E é

relative

120 min. Net-Inter-Change Forecast: Model Output vs. Target

FEEE. A | forecast error
EEEEL (0 (120 min.)
EEERE: DI nay
FEEEEL TN Generalization
F7 A AT
FREEmEE
SRS ALY
FrErrsas iR
F A LT

0.185529 |

LERrEr e s 1110 A1 NN

Page 20

Generalization set: 01.02.02 - 14.02.02
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Net Interchange Forecast with Linear Regressmn & Fee dforward Networks

NELIFGO I i or refativie S ] NCLIFG O IRt or ] relatIve S

| Project View  Actions 2 o Project View Actions

relative forecast error
Linear regression | (120 min. Torecast | Feedforward

relative forecast error
(120 min. forecast)

EmwhslGeneralization

model e | neural network —

Epochs | CGeneralization

25 279756 106 296631
2i 279895 107 296507

27
28
29
30

279683 ] ] 108
.279655 | 5 166
.2T9655 ; ; 1o
.279656 1 1 111

.29e3z’
.295791
0_.E29553
.295522
31
3z
33

o,
o.

o

o]

o

.279656 | | 112 0.295345
. 279656 | | 113 0.294581
.279656 ] | 114 0.294514
.279656 1 4 115 0.2946z22
. 279656 ] ] 116 0.294535
.279656 | 4 117 0.294447
.279656 | | 118 ol
.279656 1 | 119 o]
.279656 1 | 1z0 o]
.279656 1 ] 121 ol

294383
.29d3Za
294394
.2943938

o000 0O0O000O0O0C00O

Epoch 121

120 min. Net-Inter-Change Forecast: Model Output vs. Target 120 min. Net-Inter-Change Forecast: Model Output vs. Target

Generalization set Generalization set

W ats B ek
ﬁ“ W R

1. Feb. 02 14. Feb. 02 1. Feb. 02 14. Feb. 02
Page 21 Learning Systems, CT IC 4 © Siemens AG, Corporate Technology




SIEMENS

Large Recurrent Neural Networks are Special

e

nonlinearity

Page 22

.
¥ 4 A Y
I Calcuius ! |
\ / " s
u — - I )
/¢ Neural
' Networks
\ /
~ - o = v
C Linear Algebra
dim(s)

» |n case of a changing environment, large networks
have to be dynamical consistent closed systems.

= For changing environments large open systems
would define an inconsistent learning task.

» To avoid signal avalanches, large recurrent
networks have to be sparsely interconnected.

» Random sparsity improves long term memory and
supports the modeling of multiple time scales.

= | arge recurrent networks model the data perfectly,
still leaving the opportunity of an eigendynamics.

= The eigenactivity can be seen as a self-created
internal noise, which acts as a self-regularization.
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Dynamical Consistency Problem in the Modeling of Dyn

i

st = f(st,up)
Yi= Q(St)

ul ’

Modeling in form of open dynamical
systems is only consistent if the
external drivers are nearly constant

from present time on.

Otherwise the learning works only for
small RNNs because, following the
regression paradigm, the optimization
finds an intermediate solution between
the active & the constant environment.
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amical Systems

S, = tanh(Ag + But) state transition

Learning Systems, CT IC 4

output equation

mi rg identification
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From Standard to Normalized Recurrent Neural Networks

| |

W.l.0.g. we can model a dynamics by one matrix A:

0

r<t:s =tanh(As,, +[|% )

r>t: s =tanh(As,_,)

T-n t+n

y,=[doos , > > (¥, )" - min

t=m 7=t-m

D OO ® ® ®
[1dOQ) [Id O O] [1doq [1dOQ) [1dOQ]

>
ra

+

) ——E)—"—G

the real world by various matrices A, B, C.

&
8 L
O'd It is philosophically implausible, to model
U,
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Modeling the Dynamics of Observables

Inputs and targets are merged to _ _ + O d
observables. Indthe net we refer to rst: § =tanh(As., % yr)
observations Y; and expectations Y, _ _
of these observables. r>t: s =tanh(As_)
Due to the network design, the 5 oy Lo . :
iInput to output relation is delayed. Yr= [ld 0 O]s, ’ ;T;m( Y= %) - i
yt— yt— @ yt+
[1dOQ] [1dOQ] [1d0Q] [1dO0Q] [1dOQ]
)LL)
HEt ]
Id d Id
d d d Now we have a contradiction: The
Yi- - Yt modeling is dynamical inconsistent.
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Modeling Dynamical Systems with Dynamical Consisten t Neural Networks

Missing future observations et s __Ig 9 8—tanh(As i 8 . zf-:;xgj;a\t,zns
are substituted by the 2705 0 0 e U y 4 observations
models own expectations. - - =L ‘
DCNNs overcome the | Id 0 0 Y+ expectations
schizophrenic learning of r>ts = I% 'g 8 tanh(As ) . hf:_z;d‘lirt‘a‘t’ins
only 1 matrix A for both a - -=C, Ve &
changing and a constant T-n t+n o _
environment. alz: yp=[1d 0 0l s > D (y,~¥)) - min
t=m 7=t-m
@) Q 2
[Id O Q] [Id 0 Q] [Id 0 O]
C G ) (A )& G A
Yoy R Ty Ry
; [ ;
= d . Consistency is a necessary condition
Yi for the learning of large systems.
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Neural Networks - From Data Mining to Model Building

Data alone often do not cover the modeling task. Thus, we merge
model building by data, prior knowledge and first principles.

Time Series Data Decision Support

Data Cleanin
9 Forecast & Risk

Fuzzy Logic

Network
Architectures
&
Learning
Algorithms

Rule based Modeling
Forecast Model

Deterministic - Stochastic

Dynamical Systems

Time / Causality

Specific Knowledge Understanding

Multi-Agent Models Falsification of Causality

Neural networks (SENN) allow systems analysis, forecasting
& risk analysis as well as the setup of decision support systems.
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