2.3 Ähnlichkeitsmodelle für Bilder

Inhaltsbezogene Suche in Bilddatenbanken

- Suche über Standardattribute
 - Primärschlüssel (z.B. Dateiname): Keine "Suche", da Identifikator bereits bekannt.
 - Sekundäre Merkmale (Kontextinformationen) wie Entstehungsdatum, Entstehungsort, Rechteinhaber sind nur begrenzt hilfreich.
- Inhaltsbasierte Suche über Schlüsselwörter
 - Manuelle Verschlagwortung bedeutet großen Aufwand.
 - Schlagwörter müssen normiert sein (Abhilfe durch Dictionaries möglich).
 - Schlagwörter decken immer nur bestimmte ausgewählte Aspekte ab (z.B. abgebildete Gegenstände, Indoor/Outdoor/...-Klassifikation)
 - Schlagwortsuche versagt, wenn betrachteter Aspekt nicht als Schlagwort aufgenommen wurde (z.B. "Suche alle Bilder mit hohem Grünanteil am unteren Rand").
- Suche über den eigentlichen Bildinhalt
 - Konzept: Inhalt aus der internen Bildrepräsentation (Pixel) ableiten.
 - Aufwand und Probleme der manuellen Verschlagwortung entfallen.
 - Möglichkeiten: Farben, Texturen, Formen

 ${\it Skript} \ {\it Multimedia-Datenbanksysteme} \cdot {\it Modelle} \ der \ {\it Datenexploration}$

- 58 -

Ähnlichkeitsmodelle für Bilder

Merkmale von Bildern

- Farbe
 - Farbhistogramme (QBIC) [HSE+ 95]
- Textur
 - Beschaffenheit von Bildsegmenten (z.B. Holzmaserung, Kieselsteine, Karomuster)
 - Evaluierung verschiedener Distanzfunktionen [PBRT 99]
- Formen (Konturen)
 - Algebraische Moment-Invarianten [TC 91] [FBF+ 94]
 - Pixelbasierte Ähnlichkeitsmodelle [WJ 96] [AKS 98]
 - Morphologisches Ähnlichkeitsmodell [KSF+ 98]

Systeme zur Inhaltsbasierten Suche

- *QBIC*: Query By Image (and Video) Content. IBM Almaden Research Center
- ImageMiner. Technologie-Zentrum Informatik, Uni Bremen
- VisualSeek. Center for Telecom Research, Columbia Univ., NY
- MARS: Multimedia Analysis and Retrieval System. U. Illinois/Urbana-Champaign
- Surfimage. INRIA Recquencourt, France
- ... und viele mehr!

2.3.1 Farbhistogramme und Quadratische Formen (QBIC)

[HSE+ 95] Hafner J., Sawhney H. S., Equitz W., Flickner M., Niblack W.: Efficient Color Histogram Indexing for Quadratic Form Distance Functions. PAMI 17(7), 1995, 729-736.

- 59

Farbhistogramme

- Repräsentation der Farbverteilung in einem Bild (auf Pixelbasis)
- Definition der Farbhistogramme
 - Farbraum festlegen (z.B. RGB, HSV, HLS, Munsell, ...)
 - Menge von Repräsentanten im Farbraum auswählen (sample points)
 - z.B. Gitter im Farbraum mit $4 \times 4 \times 4 = 64$ Farben oder $8 \times 8 \times 8 = 512$ Farben
- Berechnung der Farbhistogramme
 - Für jedes Pixel, erhöhe den Zähler des nächstgelegenen Repräsentanten um eins.
 - Evtl. Normierung, um Histogramm von der Bildgröße unabhängig zu machen.
 - Beispiel (64 Repräsentanten):

Skript Multimedia-Datenbanksysteme \cdot Modelle der Datenexploration

Farbmodelle

Technische Modelle (RGB, CMY) und anschauliche Modelle (HSV, HLS)

Distanzfunktionen

• Beispiel euklidische Distanz: Seien H^P und H^Q die Farbhistogramme der Bilder P und Q. $D(P, Q) = \sqrt{(H^P - H^Q) \cdot (H^P - H^Q)^T}$

Es gilt: $D(\text{`RED'}, \text{`PINK'}) = \sqrt{2}$, $D(\text{`RED'}, \text{`BLUE'}) = \sqrt{2}$, $D(\text{`PINK'}, \text{`BLUE'}) = \sqrt{2}$

- Problem der euklidischen Distanz
 - Im Beispiel haben alle Paare von Bildern denselben Abstandswert $\sqrt{2}$.
 - Der Sachverhalt, dass rot ähnlicher zu lila als zu blau ist, wird nicht beachtet.
 - Hintergrund: Querbezüge zwischen Dimensionen werden grundsätzlich negiert.

 $\mathsf{Skript} \ \textit{Multimedia-Datenbanksysteme} \cdot \textit{Modelle der Datenexploration}$

- 62 -

Ähnlichkeitsmodelle für Bilder

Quadratische Formen als Distanzfunktionen

• Definition. Sei A eine Ähnlichkeitsmatrix, dann gilt:

$$D_{A}(P,Q) = \sqrt{(H^{P} - H^{Q}) \cdot A \cdot (H^{P} - H^{Q})^{T}} = \sqrt{\sum_{i} \sum_{j} a_{ij}(H^{P}_{i} - H^{Q}_{i})(H^{P}_{j} - H^{Q}_{j})}$$

• Die Einträge a_{ij} einer Ähnlichkeitsmatrix $A = [a_{ij}]$ beschreiben die Ähnlichkeit der Dimensionen *i* und *j* in den Vektoren (Bins *i* und *j* in den Histogrammen).

$$A = \begin{bmatrix} 1 & & \\ & \cdots & \\ & & a_{ij} & \cdots & \\ & & & 1 \end{bmatrix}$$

• Im obigen Beispiel erhalten wir für die Matrix $A' = \begin{bmatrix} 1,0 & 0,9 & 0,0 \\ 0,9 & 1,0 & 0,0 \\ 0,0 & 0,0 & 1,0 \end{bmatrix}$ die Abstandswerte:

$$D_A(\text{`RED', 'PINK'}) = \sqrt{0.2}, \quad D_A(\text{`RED', 'BLUE'}) = \sqrt{2}, \quad D_A(\text{`PINK', 'BLUE'}) = \sqrt{2}$$

- Beispiele f
 ür Ähnlichkeitsmatrizen (vgl. [HSE+ 95]; d_{ij} ist der Abstand der Bins i und j):
 a_{ij} = (1 d_{ij} / d_{max})
 - $a_{ij} = \exp(-\sigma (d_{ij} / d_{max})^2)$ (für $\sigma \to \infty$ erhält man die Einheitsmatrix)
 - QBIC verwendet eine aus Ergebnissen der Perzeptionsforschung abgeleitete Matrix.

Eigenschaften von Ähnlichkeitsmatrizen

• Symmetrie

Wir dürfen annehmen, dass Ähnlichkeitsmatrizen immer symmetrisch sind, denn: **Lemma.** Zu jeder Matrix *A*' gibt es eine symmetrische Matrix $A = (A' + A'^T)/2$ mit $D_A(P, Q) = D_{A'}(P, Q).$

Beweis. Sei $\Delta = H^P - H^Q$, dann gilt:

$$D_{A}(P,Q) = \sqrt{\Delta \cdot A \cdot \Delta^{T}} = \sqrt{\Delta \cdot \frac{A' + A'^{T}}{2} \cdot \Delta^{T}} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{a_{ij} + a_{ji}}{2}\right)} \Delta_{i} \Delta_{j} = \sqrt{\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \Delta_{i} \Delta_{j} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ji} \Delta_{i} \Delta_{j}} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \Delta_{i} \Delta_{j}} = D_{A'}(P,Q)$$

• Geometrie von ε-Anfragen

euklidische Distanz

euklidische Distanz

positiv-definite quadratische Form

Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

(Ahnlichkeitsmodelle für Bilder)

- Positiv definite Matrizen (PD)
 - Ähnlichkeitsmatrizen müssen positiv definit sein.
 - Definition aus der linearen Algebra: A ist PD gdw. $x A x^T > 0$ für alle $x \neq 0$.
 - D.h. Matrix ist PD gdw. Distanzfunktion ist PD (nötig für Metrik!).
 - Test, ob eine Matrix PD ist z.B. durch Berechnung der Cholesky-Zerlegung.
- Positiv semidefinite Matrizen (PSD)
 - Für bestimmte Anwendungen kann man sich semi-definite Matrizen vorstellen.
 - Definition: A ist PSD gdw. $x A x^T \ge 0$ für alle x.
 - D.h. auch für $x \neq 0$ (Histogramme: $H^P \neq H^Q$) kann der Distanzwert verschwinden.
 - Geometrische Deutung für ε-Anfragen: Der Anfragebereich ist unbeschränkt.

Lemma. Falls $x A x^T = 0$ für ein $x \neq 0$, dann auch $\lambda x A \lambda x^T = 0$ für alle $\lambda \in \Re$.

ε-Anfragebereich einer PSD gewichteten euklid. Distanz

ε-Anfragebereich einer PSD quadratischen Form

Anfragebearbeitung für Quadratische Formen

- Problem: Die Auswertung einer quadratischen Form in *d* Dimensionen benötigt $O(d^2)$ viele arithmetische Operationen; die Laufzeit einer sequentiellen Auswertung für eine Datenbank mit *n* Objekten ist $O(n \cdot d^2)$. Gesucht sind schnellere Verfahren.
- Diagonalisierung der Ähnlichkeitsmatrix
 - Idee: Quadratische Form in gewichteten euklidischen Abstand überführen.
 - Grundlage: Jede PD-Matrix A läßt sich diagonalisieren.
 - Das bedeutet: Es gibt eine Diagonalmatrix $W = \text{diag}(w_1, ..., w_n)$ sowie eine orthonormale Matrix V, d.h. $V V^T = V^T V = Id$, sodass gilt:

$$A = V W V^{T}$$

— Damit gilt für alle Vektoren (Histogramme) p und q:

 $D_A(p,q) = \sqrt{(p-q) \cdot VWV^T \cdot (p-q)^T} = \sqrt{(pV-qV) \cdot W \cdot (pV-qV)^T} = D_W(pV,qV)$

- D_A ist also äquivalent zum gewichteten euklidischen Abstand D_W , nachdem alle beteiligten Vektoren der Basistransformation V unterworfen wurden.
- Die Gewichte $w_1, ..., w_n$ sind die *Eigenwerte* der Matrix A, die zugehörigen Spalten in V sind die *Eigenvektoren* von A.

Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

- 66 -

- Dimensionsreduktion
 - Da *A* positiv definit ist, sind alle Eigenwerte w_i positiv, d.h. $w_i > 0$, und ein "Abschneiden" der *d*-dimensionalen Vektoren *pV* und *qV* auf *r* < *d* Dimensionen liefert eine garantierte untere Schranke für $D_W = D_A$:

$$D_{W,r}(pV, qV) = \sqrt{\sum_{i=1}^{r} w_i (pV_i - qV_i)^2} \le \sqrt{\sum_{i=1}^{d} w_i (pV_i - qV_i)^2} = D_W(pV, qV)$$

- Die untere Schranke-Eigenschaft stellt die Vollständigkeit der Anfragebearbeitung sicher.
- Beobachtung: Die Transformation hängt von der Ähnlichkeitsmatrix A ab!
- Anpaßbarkeit durch den Benutzer
 - Ähnlichkeit hat einen stark subjektiven Charakter.
 - Ein Benutzer ist mit der vorgegebenen Matrix möglicherweise nicht zufrieden.
 - Neuaufbau eines Indexes zur effizienten Datenbanksuche bzgl. D_A ist sehr teuer; erwünscht sind deshalb flexiblere Techniken, die eine Modifikation der Ähnlichkeitsmatrix zur Anfragezeit ermöglichen.

2.3.2 Texturen in Bildern

Die Textur beschreibt die Beschaffenheit von Bildsegmenten (dargestellte Oberflächen).

Texturmodell in QBIC

[FBF+ 94] Faloutsos C., Barber R., Flickner M., Hafner J., et al.: *Efficient and Effective Querying by Image Content*. Journal of Intelligent Information Systems 3, 231-262, 1994.

- Gerichtetheit, Orientiertheit (Directionality)
 - Vorhandensein von (Vorzugs-)Richtungen
 - Beispiel: Mauerfugen versus Kieselsteine
 - aus Verteilung der Gradientenrichtungen in den Bildern
- Kontrast (Contrast)
 - Lebendigkeit (Unruhe) eines Musters
 - Beispiel: weiße Wand versus Sand
 - Berechnung aus der Varianz im Grauwerthistogramm
- Granularität (Coarseness)
 - Größenordnung der Textur
 - Beispiele: Sand vs. Kieselsteine; feine vs. grobe Mauer
 - Berechnung durch über das Bild verschobene Fenster unterschiedlicher Größe

Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

Ähnlichkeitsmodelle für Bilder

2.3.3 Evaluierung verschiedener Distanzfunktionen für Farben und Texturen

- 68 -

[PBRT 99] J. Puzicha, J.M. Buhmann, Y. Rubner, C. Tomasi: *Empirical Evaluation of Dissimilarity Measures for Color and Texture*. Int. Conf. on Computer Vision 1999, 1165-1173.

Repräsentation von Bildinhalten (Farben, Texturen) durch Histogramme

- Charakterisierung
 - Histogramme sind eine diskrete Beschreibung der Verteilung von Featurewerten.
 - Die Diskretisierung basiert auf einer Vorgabe von *n* Prototypen $\{c_i | i = 1, ..., n\}$.
 - Die resultierenden Histogramme haben *n* Dimensionen (Bins).
- Formale Definition
 - Für jedes Pixel I(x) wird der nächstgelegene Prototyp c_j bestimmt (Voronoi-Modell).
 - Der Wert $h_I(i)$ ist die Anzahl der dem Prototypen c_i zugeordneten Pixel im Bild I:

$$h_I(i) = \left| \{ x \mid || I(x) - c_i || < || I(x) - c_j ||, j = 1, ..., n \} \right|$$

• Reguläres vs. adaptives Binning

Problem: Wieviele Bins sollen verwendet werden?

— Reguläres Binning: Für alle Bilder werden dieselben Prototypen $\{c_i\}$ verwendet.

- Adaptives Binning: Die Menge der Prototypen $\{c_i\}$ wird jeweils dem Bild angepaßt.
- Randhistogramme
 - Für mehrdimensionale Features kann man die Randverteilungen darstellen, d.h. die Verteilung pro Dimension. Für eine Dimension *r* gilt dann:

$$h_I^r(i) = \{x \mid t_{i-1}^r < I^r(x) \le t_i^r\}$$

- wobei dem Bin *i* in der Dimension *r* das Featureinterval (t_{i-1}^r, t_i^r) zugeordnet ist.
- Nachteil: Informationen über Korrelationen der Dimensionen gehen verloren.
- Vorteil: Geringere Anzahl von Bins als bei Betrachtung des gesamten Raumes (Oberfläche statt Volumen).
- Kumulative Randhistogramme
 - Die Einträge in den Bins werden mit aufsteigendem *i* aufsummiert:

$$H_I^r(i) = \{x \mid I^r(x) \le t_i^r\}$$

 ${\small \mathsf{Skript}} \ {\small \textit{Multimedia-Datenbanksysteme}} \cdot {\small \textit{Modelle der Datenexploration}}$

Distanzfunktionen als (Un-)Ähnlichkeitsmaße

Im folgenden bezeichnet D(I, J) die Distanz der beiden Bilder I und J, und $D^{r}(I, J)$ die Distanz beschränkt auf die Randverteilung in der Dimension r.

- Heuristische Histogramm-Distanzen Gebräuchlichste Form von Distanzfunktionen
 - Minkowski-Distanz L_p

$$D(I, J) = \left(\sum_{i} |h_{I}(i) - h_{J}(i)|^{p}\right)^{1/p}$$

Beispiele: euklidische Distanz (L_2), Summendistanz (L_1), Maximumsdistanz (L_{∞})

— Weighted-Mean-Variance (WMV)

$$D^{r}(I, J) = \frac{\left|\mu_{r}(I) - \mu_{r}(J)\right|}{\left|\sigma(\mu_{r})\right|} + \frac{\left|\sigma_{r}(I) - \sigma_{r}(J)\right|}{\left|\sigma(\sigma_{r})\right|}$$

wobei $\mu_r(I)$, $\mu_r(J)$ die Mittelwerte und $\sigma_r(I)$, $\sigma_r(J)$ die Standardabweichungen bezeichnen.

- 71

• Nicht-parametrische Teststatistiken

Gemessen wird die Wahrscheinlichkeit für die Hypothese, daß die beiden Verteilungen *I* und *J* empirische Beobachtungen derselben zugrundeliegenden wahren Verteilung sind.

— Kolmogorov-Smirnov (KS)

Maximale Diskrepanz zwischen den kumulativen Randverteilungen:

$$D^{r}(I, J) = \max_{i} |H_{I}^{r}(i) - H_{J}^{r}(i)|$$

Statistiken vom Cramer/von Mises-Typ (CvM)
 Ebenfalls über die kumulativen Randverteilungen definiert:

Skript Multimedia-Datenbanksysteme \cdot Modelle der Datenexploration

- 72 -

Ähnlichkeitsmodelle für Bilder

$$D^{r}(I, J) = \sum_{i} (H_{I}^{r}(i) - H_{J}^{r}(i))^{2}$$

— χ^2 -Statistik Sei $h'(i) = (h_I(i) + h_J(i))/2$ der gemeinsame Schätzwert der beiden Verteilungen:

$$D^{r}(I, J) = \sum_{i} \frac{(h_{I}(i) - h'(i))^{2}}{h'(i)}$$

• Informationstheoretische Divergenzen

Gemessen wird, wie kompakt eine Verteilung *I* unter Verwendung der Verteilung *J* als Code codiert werden kann (vgl. Entropie).

— Kullback-Leibler-Divergenz (KL)

$$D(I, J) = \sum_{i} h_{I}(i) \cdot \log \frac{h_{I}(i)}{h_{J}(i)}$$

Jeffrey-Divergenz (JD) oder Jensen-Shannon-Divergenz
 Im Gegensatz zu KL ist JD symmetrisch und numerisch stabiler:

$$D(I, J) = \sum_{i} h_{I}(i) \cdot \log \frac{h_{I}(i)}{h'(i)} + h_{J}(i) \cdot \log \frac{h_{J}(i)}{h'(i)}$$

• Grunddistanzbasierte Maße

 Basis ist eine Grunddistanz zwischen den einzelnen Features (Bins), die durch Expertenwissen aus der Anwendung gedeckt sind (Bsp. Perzeptionsforschung bzgl. Farben und Texturen in Bildern).

– 73 -

— Quadratische Formen (QF) Die Einträge a_{ij} der Ähnlichkeitsmatrix $A = [a_{ij}]$ beschreiben die Ähnlichkeit (Korrelation) der Features (Bins) *i* und *j* (z.B. $a_{ij} = e^{-\sigma(d_{ij}/d_{max})^2}$):

$$D(I, J) = \sqrt{(h_I - h_J) \cdot A \cdot (h_I - h_J)^T}$$

Um eine Metrik zu erhalten, muß die Matrix A positiv definit sein.

— Earth Movers Distance (EMD)

 $Skript \ \textit{Multimedia-Datenbanksysteme} \cdot \textit{Modelle der Datenexploration}$

- 74 -

Ähnlichkeitsmodelle für Bilder)

Idee: Minimale Kosten, um eine Verteilung *I* in eine Verteilung *J* umzuwandeln. D.h. Minimale Summe aller Einzelkosten, um eine (Feature-)Einheit von einem Bin zu einem anderen zu verschieben.

Berechnung durch lineare Optimierung als Lösung eines Transportproblems:

$$D(I, J) = \frac{\sum_{i,j} g_{ij} d_{ij}}{\sum_{i,j} g_{ij}}$$

wobei d_{ij} die Unähnlichkeit der Bins *i* und *j* beschreibt und g_{ij} den optimalen Fluß zwischen den Verteilungen *I* und *J*, sodass die Gesamtkosten $\sum_{i,j} g_{ij} d_{ij}$ bezüglich folgender Nebenbedingungen minimal sind:

- (i) $\sum_{i} g_{ij} \leq h_J(j)$ Häufe auf $h_J(j)$ nicht mehr als möglich.
- (*ii*) $\sum_{i} g_{ij} \leq h_I(i)$ Ziehe von $h_I(i)$ nicht mehr als möglich ab.
- (*iii*) $\sum_{i,j} g_{ij} = \min(\sum_{i} h_I(i), \sum_{j} h_J(j))$ Bewege eine der Verteilungen vollständig.
- EMD ist eine Metrik, falls die Grunddistanz d_{ij} eine Metrik bildet und die beiden Verteilungen die gleiche Masse enthalten (vgl. Bedingung *iii*).
- EMD unterstüzt adaptives Binning.

 $Skript \ \textit{Multimedia-Datenbanksysteme} \cdot \textit{Modelle der Datenexploration}$

- 76 -

Ähnlichkeitsmodelle für Bilder

	L_p	WMV	KS/ CvM	χ^2	KL	JD	QF	EMD
Symmetrisch	+	+	+	+	0	+	+	+
Dreiecksungleichung	+	+	+	0	0	0	+*	+*
Berechnungskomplexität	mittel	niedrig	mittel	mittel	mittel	mittel	hoch	hoch
Grunddistanzbasiert	0	0	+	0	0	0	+	+
Individuelles Binning	0	+	0	0	0	0	0	+
Mehrdimensional	+	+	0	+	+	+	+	+
Partielle Ähnlichkeit	0**	0	0	0	0	0	0	+
Nicht-parametrisch	+	0	+	+	+	+	***	+

Eigenschaften

* QF und EMD sind Metriken, falls die obengenannten Bedingungen erfüllt sind.

** nur in einer speziellen Form ("Histogramm-Schnitt").

*** z.B. aber auch mit Parameter σ .

Experimentelle Ergebnisse

- Die Ähnlichkeitsmaße eignen sich für verschiedene Anwendungen unterschiedlich gut.
- EMD ist am teuersten auszuwerten, liefert aber oft die besten Ergebnisse.

2.3.4 Pixelbasiertes Modell für Formen in Bildern

[AKS 98] Ankerst M., Kriegel H.-P., Seidl T.: A Multistep Approach for Shape Similarity Search in Image Databases. IEEE Transactions on Knowledge and Data Engineering (TKDE) 10(6), 1998, 996-1004.

- Anwendungen für formbasierte Ähnlichkeitssuche
 - Query By Sketch (z.B. mausgesteuerter Editor)
 - Vorgegebene Bilder
 - Grafikarchive
 - Patentrecherche
 - Medizinbilder
- Konzept der Differenzbilder

Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

- 78 -

Probleme mit der euklidischen Distanz

- Beispiel "ref"
 - Referenzbild: Balken links von einem Punkt.
 - Bei den Vergleichsbildern ist der Balken um
 - +1, -2 bzw. +10 Pixel horizontal verschoben.
 - Euklidischer Abstand zu *ref* bleibt jedoch immer derselbe.
- Problembeschreibung
 - Leichte Verschiebungen sind von starken Veränderungen nicht unterscheidbar.
 - Invarianz gegenüber globalen Translationen stellt keine Lösung dar.
 - Erwünscht ist die Robustheit gegenüber kleinen, lokalen Veränderungen.

Umgebungsbasierte Distanzfunktion

• Lösungsidee: Betrachte die Nachbarschaften der Pixel Statt nur die direkt übereinanderliegenden Pixel wie im Differenzbild zu betrachten, werden nun auch benachbarte Pixel zur Ähnlichkeitsbewertung herangezogen.

Ähnlichkeitsmodelle für Bilder

• Beispiel für unterschiedliche Gewichtungen benachbarter Pixel

- Die Gewichtung kann f
 ür alle Pixel gleich gew
 ählt werden, sie kann aber auch
 über die Bildfl
 äche hinweg variieren.
- Durch die Gewichtung $w_{1,1}$ wird der euklidische Abstand beschrieben.
- Formale Definition
 - Lokale Nachbarschaften

Zu jedem Pixel p zweier Bilder F, G werden die Pixel p' in der Umgebung betrachtet:

$$d_w(F, G)|_p = \sum_{p' \text{ Pixel}} w(p-p') \cdot (F(p') - G(p'))$$

Im obigen Modell sind nur wenige Gewichte $w(\Delta) = w(p - p')$ ungleich Null.

Skript Multimedia-Datenbanksysteme \cdot Modelle der Datenexploration

- 80 -

— Gesamtdistanz

Die mit dem lokalen Umgebungsabstand gewichteten Pixeldifferenzen werden über alle Pixel der gesamten Bildfläche addiert:

$$d_w(F, G)^2 = \sum_{p \text{ Pixel}} (F(p) - G(p)) \cdot d_w(F, G) \Big|_p =$$

$$= \sum_{p \text{ Pixel}} (F(p) - G(p)) \cdot \sum_{p' \text{ Pixel}} w(p - p') \cdot (F(p') - G(p')) =$$

$$= \sum_{p \text{ Pixel}p' \text{ Pixel}} \sum_{p' \text{ Pixel}} (F(p) - G(p)) \cdot w(p - p') \cdot (F(p') - G(p')) =$$

$$= (F - G) \cdot W \cdot (F - G)^T$$

- Beobachtung:
 - Die Distanzfunktion $d_w(F, G)$ ist eine quadratische Form.
 - Die Ähnlichkeitsmatrix W enthält für jedes Pixelpaar p, p' den Eintrag w(p p').
- Übertragung auf Farbbilder
 - Bisher werden Pixeldifferenzen F(p) G(p) bezüglich der Grauwerte benutzt.
 - Bei Farbbildern berechnet man nicht Grauwertdifferenzen F(p) G(p), sondern Farbabstandswerte $d_C(F(p), G(p))$ bzgl. einer Farbdistanzfunktion d_C .

Experimentelle Ergebnisse

• Testdatenbank mit 10.000 Clip Arts der Auflösung $32 \times 32 = 1.024$ D

• Beobachtung: Für den Nachbarschaftsbereich $w_{12,1}$ wird die um drei Pixel nach rechts verschobene Violine unter die "Top-Ten" eingeordnet.

Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

- 82 -Ähnlichkeitsmodelle für Bilder

Beispiel für eine Benutzeroberfläche

- Anfragespezifikation: Sketch Editor, Ellipsoid Editor, Parameter k.
- Ergebnisausgabe: Anfragebild, Ergebnisbilder, Distanzwerte, Differenzbilder

Adaptable Shape-oriented Image Similarity Search System								
query edit	or	>	¢	neių influ a,	ghborhood Jence area * 4 2			
number of results: 8 exit								
query image	note 1 d=43.0 (diff img)	skelett2 d=102.6 (diff img)	blume296 d=105.7 diff img	schiff8 d=106.7 (diff img)	blume317 d=108.4 (diff img)			

Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

2.3.5 Morphologisches Modell für Formen in Bildern

[KSF+ 98] Korn F., Sidiropoulos N., Faloutsos C., Siegel E., Protopapas Z.: Fast and Effective Retrieval of Medical Tumor Shapes. IEEE Transactions on Knowledge and Data Engineering (TKDE) 10(6), 1998, 889-904.

- 83

- Motivation
 - Betrachtung von Formen unabhängig von Lage und Orientierung im Bild.
 - Oberflächenbeschaffenheit (rauhe oder glatte Kontur) bzgl. unterschiedlicher Größenmaßstäbe (feingliedrige bzw. grobgliedrige Oberflächenstruktur) wichtig.

Distanz von Formen

- Symmetrische Flächendifferenz zweier Formen *P* und *Q*: $d(P, Q) = |P - Q| + |Q - P| = |P \cup Q| - |P \cap Q|$
- Translations- und rotationsinvariante Distanz d* zweier Formen: Sei R die Menge aller euklidischen Transformationen (Translationen und Rotationen), dann gilt für zwei Formen P, Q:

 $d^*(P, Q) = \inf_{R \in \Re} d(P, R(Q))$

Die Infimumsbildung über alle Translationen und Rotationen bewirkt die bestmögliche aller Überlagerungen der beiden Formen P und Q.

• Problem: Rauheit von Oberflächenstrukturen wird nicht adäquat berücksichtigt.

 $\mathsf{Skript} \ \textit{Multimedia-Datenbanksysteme} \cdot \textit{Modelle der Datenexploration}$

- 84 -

Operationen der mathematischen Morphologie

• Hier: Opening und Closing Ein strukturelles Element *H*(z.B. Kreis) wird wie folgt auf eine Form *X* angewandt:

Opening $X \circ H$:

Zu $X \circ H$ gehören diejenigen Teile von X, die H abdecken kann, ohne X zu verlassen.

Closing $X \bullet H$:

Zu $X \cdot H$ gehört alles, was H nicht abdecken kann, ohne in X einzudringen.

• Auswirkungen

Opening und Closing haben unterschiedliche Auswirkungen auf die Oberfläche einer Form:

- Opening:
- feine Ausbuchtungen werden entfernt.
- feine Einbuchtungen werden verstärkt.

- Closing:

- feine Ausbuchtungen werden verstärkt.
- feine Einbuchtungen werden entfernt.

Morphologiebasierte Distanz von Formen

 Vektoren von morphologisch veränderten Formen Die Oberflächenstruktur einer Form wird einbezogen, indem für ein Element *H* in verschiedenen Größen *m* (−*M* ≤ *m* ≤ *M*) die entsprechenden Openings (*m* > 0) und Closings (*m* < 0) gebildet und in einem (2·*M*+1)-dim. Vektor *f*^{*H*}(*X*) zusammengefaßt werden:

$$f^{H}(X) = \underbrace{(f^{H}_{-M}(X), \dots, f^{H}_{-1}(X), f^{H}_{0}(X), f^{H}_{1}(X), \dots, f^{H}_{M}(X))}_{M \text{ openings}} \quad \text{wobei } f^{H}_{m}(X) = \begin{cases} X \circ mH & m > 0 \\ X & m = 0 \\ X \bullet mH & m < 0 \end{cases}$$

• Morphologische Distanz

Für zwei Vektoren $f^{H}(X_1)$ und $f^{H}(X_2)$ werden komponentenweise die Distanzen d^* berechnet, über die dann eine *p*-Norm gebildet wird (Summe, euklidisch, Maximum):

$$d^{H}_{\text{morph, }p}(X_{1}, X_{2}) = \left(\sum_{m=-M}^{M} \left| d^{*}(f_{m}^{H}(X_{1}), f_{m}^{H}(X_{2})) \right|^{p} \right)^{1/p}$$

• Die morphologische Distanz $d^{H}_{\text{morph, }p}$ ist eine Metrik.

Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

- 86

Ähnlichkeitsmodelle für Bilder

Granulometrische Distanz

- Probleme der morphologischen Distanz
 - Exakte Objektrepräsentation muß im Hauptspeicher vorliegen.
 - Berechnung ist sehr teuer (insbesondere Infimumsbildung für *d**-Berechnungen).
 - Erwünscht ist ein einfacheres Distanzmaß, das sich für einen Filterschritt eignet.
 - Idee: Granulometrisches Formenspektrum.
- Größenverteilung von Formen

Die Größenverteilung einer Form X bezüglich eines strukturellen Elements H ist definiert als der $(2 \cdot M+1)$ -dimensionale Vektor sd(X) ("size distribution"):

 $sd(X) = (|f_{-M}^{H}(X)|, ..., |f_{-1}^{H}(X)|, |f_{0}^{H}(X)|, |f_{1}^{H}(X)|, ..., |f_{M}^{H}(X)|)$

- Invarianzeigenschaft: Die Größenverteilung beinhaltet nur Flächenmaßzahlen und ist deswegen eine translations- und rotationsinvariante Darstellung von Formen.
- Die Größenverteilung kann als kumulatives Formenspektrum angesehen werden: Die Differenzen der $|f_m^H(X)|$ beschreiben das Ausmaß der geometrischen Details, die beim nächstgrößeren Opening bzw. Closing entfernt bzw. hinzugefügt werden.

Ähnlichkeitsmodelle für Bilder

• *Granulometrische Distanz*

Für ein strukturelles Element *H* wird eine *p*-Norm über dem $(2 \cdot M+1)$ -dimensionalen Differenzvektoren der Größenverteilungen gebildet:

$$\delta^{H}_{\text{gran}, p}(X_1, X_2) = \| sd(X_1) - sd(X_2) \|_p$$

• Lemma

Die granulometrische Distanz ist eine untere Schranke der morphologischen Distanz:

$$\delta^{H}_{\text{gran}, p}(X_1, X_2) \leq d^{H}_{\text{morph}, p}(X_1, X_2)$$

Beweis. Es gilt $d^*(X_1, X_2) \ge ||X_1| - |X_2||$, wobei die Gleichheit nur erreicht wird, wenn X_1 und X_2 durch eine rigide Transformation $R \in \Re$ zur Deckung gebracht werden. Dann gilt auch für alle m: $d^*(f_m(X_1), f_m(X_2)) \ge ||f_m(X_1)| - |f_m(X_2)||$ und insbesondere:

$$\left(\sum |J^*(f_1(\mathbf{X})) - f_1(\mathbf{X})||_p\right)^{1/p} \ge \left(\sum ||f_1(\mathbf{X})| - |f_2(\mathbf{X})||_p\right)^{1/p} \text{ and more solution}$$

$$\left(\sum_{m} \left| d^*(f_m(X_1), f_m(X_2)) \right|^p \right)^{1/p} \geq \left(\sum_{m} \left| \left| f_m(X_1) \right| - \left| f_m(X_2) \right| \right|^p \right)^{1/p} \text{ q.e.d.}$$

Bemerkung. Das Lemma gewährleistet die Vollständigkeit einer mehrstufigen Anfragebearbeitung für die morphologische Distanz unter Verwendung der granulometrischen Distanz im Filterschritt.

Skript Multimedia-Datenbanksysteme \cdot Modelle der Datenexploration

- 88 -

Architektur der Anfragebearbeitung

- Datenhaltung
 - Die exakten Formen werden im Sekundärspeicher gehalten.
 - Die Größenverteilungen (Vektoren) werden in einem mehrdimensionalen Index verwaltet.
- Anfragebearbeitung
 - Berechne die Größenverteilung sd(Q) der Anfrageform Q und starte mit diesem Vektor eine Anfrage auf dem Index bezüglich der granulometrischen Distanz.
 - Hole für die gewonnenen Kandidaten die exakte Darstellung vom Sekundärspeicher und berechne die morphologische Distanz (ca. 12.69 Sekunden im Mittel pro Paar).
- Experimentelles Ergebnis zweier Ähnlichkeitsanfragen

Quelle: [KSF+96]

Referenzen

- [AKS 98] Ankerst M., Kriegel H.-P., Seidl T.: A Multistep Approach for Shape Similarity Search in Image Databases. IEEE Transactions on Knowledge and Data Engineering (TKDE) 10(6), 1998, 996-1004.
- [CG 99] S. Cohen, L. Guibas: The Earth Mover's Distance under Transformation Sets. Proc. Int. Conf. on Computer Vision (ICCV) 1999.
- [FBF+ 94] Faloutsos C., Barber R., Flickner M., Hafner J., Niblack W., Petkovic D., Equitz W.: *Efficient and Effective Querying by Image Content*. Journal of Intelligent Information Systems 3, 231-262, 1994.
- [FSN+ 95] Flickner M., Sawhney H., Niblack W., Ashley J., Huang Q., Dom B., Gorkani M., Hafner J., Lee D., Petkovic D., Steele D., Yanker P.: Query by Image and Video Content: The QBIC System. IEEE Computer, 23-32, Sept. 1995.
- [HSE+ 95] Hafner J., Sawhney H. S., Equitz W., Flickner M., Niblack W.: *Efficient Color Histogram Indexing for Quadratic Form Distance Functions*. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 17(7), 1995, 729-736.
- [KSF+ 96] Korn F., Sidiropoulos N., Faloutsos C., Siegel E., Protopapas Z.: Fast Nearest Neighbor Search in Medical Image Databases. Proc. Int. Conf. on Very Large Data Bases (VLDB) 1996, 215-226.
- [KSF+ 98] Korn F., Sidiropoulos N., Faloutsos C., Siegel E., Protopapas Z.: Fast and Effective Retrieval of Medical Tumor Shapes. IEEE Transactions on Knowledge and Data Engineering (TKDE) 10(6), 1998, 889-904.
- [MM 96] Manjunath B. S., Ma W. Y.: Texture Features for Browsing and Retrieval of Image Data. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 18(8): 837-842, 1996.
- [NBE+ 93] Niblack W., Barber R., Equitz W., Flickner M., Glasmann E., Petkovic D., Yanker P., Faloutsos C., Taubin G: The QBIC Project: Querying Images by Content Using Color, Texture, and Shape. SPIE 1993 Int. Symposium on Electronic Imaging: Science and Technology Conference 1908, Storage and Retrieval for Image and Video Databases, San Jose, CA, 1993.
- [PBRT 99] J. Puzicha, J.M. Buhmann, Y. Rubner, C. Tomasi: Empirical Evaluation of Dissimilarity Measures for Color and Texture. Int. Conf. on Computer Vision (ICCV) 1999, 1165-1173.
- [RGT 97] Y. Rubner, L. Guibas, C. Tomasi: The Earth Mover's Distance, Multi-Dimensional Scaling, and Color-Based Image Retrieval. Proc. ARPA Image Understanding Workshop, 661-668, 1997.
- [RTG 98] Y. Rubner, C. Tomasi, L. J. Guibas: A Metric for Distributions with Applications to Image Databases. Proc. 6th IEEE Int. Conf. on Computer Vision (ICCV) 1998, 59-66.
- [TC 91] Taubin G, Cooper D. B.: Recognition and Positioning of Rigid Objects Using Algebraic Moment Invariants. in Geometric Methods in Computer Vision, SPIE 1570, 1991, 175-186.
- [TMY 78] Tamura H., More S., Yamawaki T.: Texture Features Corresponding to Visual Perception. IEEE Trans. on Systems, Man, and Cybernetics (SMC) 8(6): 460-473, 1978.
- [WJ 96] White D.A., Jain R.: Similarity Indexing with the SS-tree. Proc. IEEE Int. Conf. on Data Engineering (ICDE) 1996, 516-523.

Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

- 90 -