Kapitel 2 Ähnlichkeitsmodelle

2.1 Allgemeine Konzepte

Verschiedene Ähnlichkeitsmodelle, um subjektive Ähnlichkeitsbegriffe zu objektivieren:

- Allgemeine Ähnlichkeitsmodelle
 - Beispiel: Ähnlichkeit ist Anteil übereinstimmender Eigenschaften zweier Objekte
 - Übereinstimmende Merkmale führen z.B. zu "100% Ähnlichkeit"
- Distanzbasierte Ähnlichkeit

Der Wert einer Distanzfunktion beschreibt die (Un-)Ähnlichkeit von Objekten.

- Je größer die Distanz, desto unähnlicher sind die Objekte.
- Ein Objekt q hat zu sich selbst den Abstand Null, d.h. aus p = q folgt d(p, q) = 0.

Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

(Ähnlichkeitsmodelle – 30 – Allgemeine Konzepte

2.1.1 Typen von Ähnlichkeitsanfragen

Basis: Objektmenge O (Universum), Distanzfunktion d: $O \times O \to \Re_0^+$, Datenbank DB $\subseteq O$

Bereichsanfragen

— Anfrageparameter: Anfrageobjekt q, maximaler Ähnlichkeitsabstand ε

— Ergebnismenge: $sim_{\varepsilon}(q) = \{ o \in DB \mid d(o, q) \le \varepsilon \}$

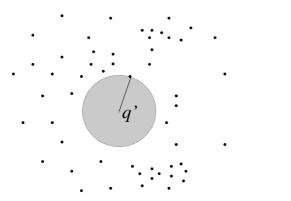
— Anzahl der Ergebnisse: im vorhinein unbekannt, zwischen 0 und |DB|

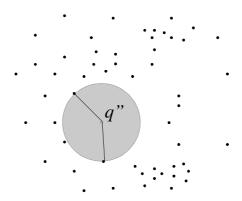
— Ergebnisbereich: spezifizierter Bereich ε

Problem der Bereichsanfragen: Wie groß soll ε gewählt werden?

ε zu klein: keine Ergebnisse ε zu groß: zu viele Ergebnisse

Nächste-Nachbarn-Anfragen


— Anfrageparameter: nur Anfrageobjekt q


— Ergebnismenge: $NN(q) = \{ o \mid \forall o' \in DB: d(o, q) \leq d(o', q) \}$

— Anzahl der Ergebnisse: 1 (mindestens) — auch Definition für "genau 1" möglich

— Ergebnisbereich: im vorhinein unbekannt, $\varepsilon_1 = \min \{d(o, q) \mid o \in DB\}$

Illustration:

eindeutiger nächster Nachbar

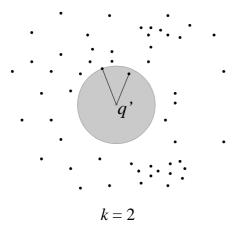
mehrere nächste Nachbarn

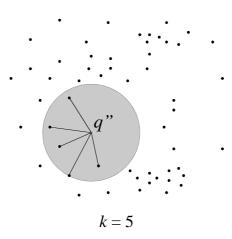
Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

(Ähnlichkeitsmodelle – 32 – Allgemeine Konzepte)

k-nächste-Nachbarn-Anfragen

— Anfrageparameter: Anfrageobjekt q, Anzahl gewünschter Ergebnisse k


— Ergebnismenge: kleinste Menge $NN_q(k) \subseteq DB$ mit $|NN_q(k)| \ge k$ für die gilt:


 $\forall o \in NN_a(k): \forall o' \in DB - NN_a(k): \hat{d}(o, q) < d(o', q)$

— Anzahl der Ergebnisse: k (mindestens)

— Ergebnisbereich: im vorhinein unbekannt, $\varepsilon_k = \max \{d(o, q) \mid o \in NN_q(k)\}$

Beispiele:

Inkrementelles Ranking (Give-me-more Query)

- Motivation
 - Oft kennt man weder brauchbare ε noch vernünftige k zu Beginn einer Recherche
 - Beispiel: Internet-Suchmaschinen
 - Gewünscht ist eine sortierte Ausgabe nach Abstand zum Anfrageobjekt

• Ablauf

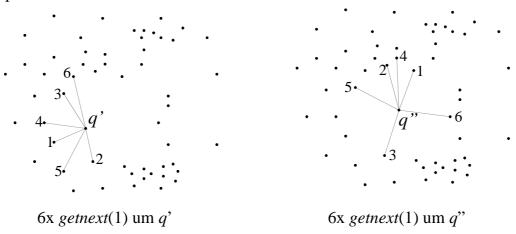
- Spezifikation eines Anfrageobjektes q beim Start.
- Wiederholte Aufrufe der Funktion $getnext(k_i)$, die jeweils die nächsten k_i Ergebnisse liefern, bis die gewünschte Ergebnismenge erreicht ist.
- Es wird also schrittweise für eine aufsteigende Folge $K_1, K_2, ...$ mit $K_n = \sum_{i=1}^n k_i$ die Menge $NN_q(K_n)$ bestimmt (hier: jeweils genau K_n Elemente, auch bei gleichem Abstand nicht mehr).
- Der Inhalt der Datenbank wird also (partiell) aufgezählt, und zwar aufsteigend nach dem Abstand zum Anfrageobjekt, d.h. für zwei Objekte o_i und o_j in dieser Aufzählung gilt:

$$\forall i, j \in \{1, ..., N\}: i < j \Rightarrow d(o_i, q) \le d(o_i, q)$$

Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

(Ähnlichkeitsmodelle – 34 – Allgemeine Konzepte)

Charakterisierung


— Anfrageparameter: Anfrageobjekt q, Aufrufe von $getnext(k_i)$

— Ergebnismenge: $NN_q(k)$ mit $k = \sum_{i=1}^n k_i$ für n Aufrufe von $getnext(k_i)$

— Anzahl der Ergebnisse: $k = \sum_{i=1}^{n} k_i$ für n Aufrufe von $getnext(k_i)$

— Ergebnisbereich: im vorhinein unbekannt, $\varepsilon_k = \max \{d(o, q) \mid o \in NN_q(k)\}$

Beispiele

2.1.2 Bewertung von Methoden zur Ähnlichkeitssuche

Übersicht

	erwünscht	unerwünscht
gefunden	richtig positive	falsch positive
nicht gefunden	falsch negative	richtig negative

- Begriffspaar Recall / Precision (aus Information Retrieval):
 - Recall: Wieviele der erwünschten Objekte wurden gefunden?
 rp / (rp + fn) = gefundene erwünschte Objekte / alle erwünschten Objekte
 - Precision: Wieviele der gefundenen Objekte sind erwünscht?
 rp / (rp + fp) = gefundene erwünschte Objekte / alle gefundenen Objekte
- Begriffspaar Sensitivität / Spezifität (aus Statistik):
 - *Sensitivität:* Wahrscheinlichkeit, daß Test für eine wahre Statistik positiv verläuft. rp / (rp + fn) = richtig positive / alle erwünschten Objekte (= recall)
 - *Spezifität:* Wahrscheinlichkeit, daß Test für eine falsche Statistik negativ verläuft. rn / (rn + fp) = richtig negative / alle unerwünschten Objekte

Skript Multimedia-Datenbanksysteme · Modelle der Datenexploration

(Ähnlichkeitsmodelle – 36 – Allgemeine Konzepte)

2.1.3 Klassen von Distanzfunktionen

— positiv-semidefinite Distanzfunktionen:

 $d(p, q) \ge 0$ (d.h. d(p, q) = 0 für $p \ne q$ möglich).

— positiv-definite Distanzfunktionen:

d(p, q) > 0 für $p \neq q$, d.h. d(p, q) = 0 genau für p = q.

- Metriken:

(i) Symmetrisch: d(p, q) = d(q, p)

(ii) Definit: d(p, q) = 0 gdw. p = q

(iii) Dreiecksungleichung: $d(p, q) \le d(p, o) + d(o, q)$

Beispiele für Distanzfunktionen in *n*-dimensionalen Vektorräumen:

- Allgemeine L_p -Distanz: $d(o, q) = \left(\sum_{i=1}^n \left|o_i q_i\right|^p\right)^{1/p}$
- p = 2, euklidischer Abstand: $d(o, q) = \sqrt{(o-q)^2}$
- $p = \infty$, Maximumsabstand: $d(o, q) = \max \{ |o_i q_i|, i = 1, ..., n \}$
- p = 1, Summenabstand, "Manhattandistanz": $d(o, q) = \sum_{i=1}^{n} |o_i q_i|$
- Gewichtete L_p -Distanzen: Benutzer kann Gewichte ändern
- Quadratische Formen: $d_A(o, q) = \sqrt{(o-q) \cdot A \cdot (o-q)^T}$ mit Ähnlichkeitsmatrix A